Problem 4.40 Develop a block-diagram representation for the circuit in Fig. P4.40 for $v_{s_2} = v_{s_3} = 0$ and:

- (a) R_1 = open circuit.
- **(b)** $R_1 = 10 \text{ k}\Omega.$

Figure P4.40: Circuit for Problem 4.40.

Solution: (a) For $v_{s_2} = 0$, the first stage is an inverting amplifier with

$$\upsilon_{o_1} = -\frac{24}{4}\,\upsilon_{s_1} = -6\upsilon_{s_1}.$$

For $\upsilon_{s_3}=0$, the second stage is also an inverting amplifier, with

$$\upsilon_o = -\frac{400}{20}\,\upsilon_{o_1} = -20\upsilon_{o_1}$$

$$v_{s_1}$$
 $G_1 = -6$ v_{o_1} $G_2 = -20$ $v_{o} = 120v_{s_1}$

(b) R_1 has no bearing on the solution, so long as $R_1 \gg R_0$, where R_0 is the output resistance of the op amp, which typically is on the order of 10–100 Ω .

Hence, for $R_1 = 10 \text{ k}\Omega$, the solution in (a) remains valid.