Problem 2.75 Generate a bounce diagram for the voltage $V(z, t)$ for a 1-m-long lossless line characterized by $Z_{0}=50 \Omega$ and $u_{\mathrm{p}}=2 c / 3$ (where c is the velocity of light) if the line is fed by a step voltage applied at $t=0$ by a generator circuit with $V_{\mathrm{g}}=60 \mathrm{~V}$ and $R_{\mathrm{g}}=100 \Omega$. The line is terminated in a load $R_{\mathrm{L}}=25 \Omega$. Use the bounce diagram to plot $V(t)$ at a point midway along the length of the line from $t=0$ to $t=25 \mathrm{~ns}$.

Solution:

$$
\begin{aligned}
& \Gamma_{\mathrm{g}}=\frac{R_{\mathrm{g}}-Z_{0}}{R_{\mathrm{g}}+Z_{0}}=\frac{100-50}{100+50}=\frac{50}{150}=\frac{1}{3} \\
& \Gamma_{\mathrm{L}}=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{25-50}{25+50}=\frac{-25}{75}=\frac{-1}{3} .
\end{aligned}
$$

From Eq. (2.149b),

$$
V_{1}^{+}=\frac{V_{\mathrm{g}} Z_{0}}{R_{\mathrm{g}}+Z_{0}}=\frac{60 \times 50}{100+50}=20 \mathrm{~V} .
$$

Also,

$$
T=\frac{l}{u_{\mathrm{p}}}=\frac{l}{2 c / 3}=\frac{3}{2 \times 3 \times 10^{8}}=5 \mathrm{~ns} .
$$

The bounce diagram is shown in Fig. P2.75(a) and the plot of $V(t)$ in Fig. P2.75(b).

Figure P2.75: (a) Bounce diagram for Problem 2.75.

Figure P2.75: (b) Time response of voltage.

