
Vol. 3A 6-1

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an 
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode.

Chapter 20, “8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 6.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW
Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor,
or within the currently executing program or task that requires the attention of a processor. They typically result in 
a forced transfer of execution from the currently running program or task to a special software routine or task 
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or 
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System 
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devices. 
Software can also generate interrupts by executing the INT n instruction. 

Exceptions occur when the processor detects an error condition while executing an instruction, such as division by 
zero. The processor detects a variety of error conditions including protection violations, page faults, and internal 
machine faults. The machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors 
also permits a machine-check exception to be generated when internal hardware errors and bus errors are 
detected.

When an interrupt is received or an exception is detected, the currently running procedure or task is suspended 
while the processor executes an interrupt or exception handler. When execution of the handler is complete, the
processor resumes execution of the interrupted procedure or task. The resumption of the interrupted procedure or 
task happens without loss of program continuity, unless recovery from an exception was not possible or an inter-
rupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when operating in protected 
mode. A description of the exceptions and the conditions that cause them to be generated is given at the end of this 
chapter.

6.2 EXCEPTION AND INTERRUPT VECTORS
To aid in handling exceptions and interrupts, each architecturally defined exception and each interrupt condition 
requiring special handling by the processor is assigned a unique identification number, called a vector number. The 
processor uses the vector number assigned to an exception or interrupt as an index into the interrupt descriptor 
table (IDT). The table provides the entry point to an exception or interrupt handler (see Section 6.10, “Interrupt 
Descriptor Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 are reserved by the
Intel 64 and IA-32 architectures for architecture-defined exceptions and interrupts. Not all of the vector numbers 
in this range have a currently defined function. The unassigned vector numbers in this range are reserved. Do not
use the reserved vector numbers. 

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are not reserved by the Intel 
64 and IA-32 architecture. These interrupts are generally assigned to external I /O devices to enable those devices 
to send interrupts to the processor through one of the external hardware interrupt mechanisms (see Section 6.3,
“Sources of Interrupts”).



6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI  interrupt. This 
table gives the exception type (see Section 6.5, “Exception Classifications”) and indicates whether an error code is 
saved on the stack for the exception. The source of each predefined exception and the NMI  interrupt is also given.

6.3 SOURCES OF INTERRUPTS
The processor receives interrupts from two sources:

• External (hardware generated) interrupts.

• Software-generated interrupts.

6.3.1 External Interrupts
External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins 
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the 
local APIC (see Chapter 10, “Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is 
enabled, the LINT[1:0] pins can be programmed through the APIC’s local vector table (LVT) to be associated with 
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI  pins, respectively. 
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the 
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section 
6.2, “Exception and Interrupt Vectors”). Asserting the NMI  pin signals a non-maskable interrupt (NMI), which is 
assigned to interrupt vector 2.

Table 6-1.  Protected-Mode Exceptions and Interrupts

Vector
No.

Mne-
monic

Description Type Error
Code

Source

 0 #DE Divide Error Fault No DIV and IDIV instructions.

 1 #DB RESERVED Fault/ Trap No For Intel use only.

 2 � NMI Interrupt Interrupt No Nonmaskable external interrupt.

 3 #BP Breakpoint Trap No INT 3 instruction.

 4 #OF Overflow Trap No INTO instruction.

 5 #BR BOUND Range Exceeded Fault No BOUND instruction.

 6 #UD Invalid Opcode (Undefined Opcode) Fault No UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math
Coprocessor)

Fault No Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Abort Yes 
(zero)

Any instruction that can generate an
exception, an NMI, or an INTR.

 9 Coprocessor Segment Overrun 
(reserved)

Fault No Floating-point instruction.2

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

15 � (Intel reserved. Do not use.) No



Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING

The processor’s local APIC is normally connected to a system-based I /O APIC. Here, external interrupts received at 
the I /O APIC’s pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core 
2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The I /O 
APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system
contains multiple processors, processors can also send interrupts to one another by means of the system bus 
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family 
and Pentium processors). 

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain 
an on-chip local APIC. These processors have dedicated NMI  and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts 
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the 
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is 
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI# 
pin is described in Chapter 34, “System Management Mode.”

6.3.2 Maskable Hardware Interrupts
Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called 
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local 
APIC include interrupt vectors 16 through 255. 

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section 
6.8.1, “Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the 
local APIC, the APIC indicates the receipt of an illegal vector. 

16 #MF x87 FPU Floating-Point Error (Math 
Fault)

Fault No x87 FPU floating-point or WAIT/FWAIT 
instruction.

17 #AC Alignment Check Fault Yes
(Zero)

Any data reference in memory.3

18 #MC Machine Check Abort No Error codes (if any) and source are model 
dependent.4

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point
instructions5

20 #VE Virtualization Exception Fault No EPT violations6

21-31 � Intel reserved. Do not use.

32-255 � User Defined (Non-reserved) 
Interrupts

Interrupt External interrupt or INT n instruction.

NOTES:
1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium III processor.
6. This exception can occur only on processors that support the 1-setting of the �EPT-violation #VE� VM-execution control.

Table 6-1.  Protected-Mode Exceptions and Interrupts  (Contd.)



6-4 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.3.3 Software-Generated Interrupts
The INT n instruction permits interrupts to be generated from within software by supplying an interrupt vector 
number as an operand. For example, the INT 35 instruction forces an implicit call to the interrupt handler for inter-
rupt 35. 

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. I f the processor’s 
predefined NMI  vector is used, however, the response of the processor will not be the same as it would be from an 
NMI  interrupt generated in the normal manner. I f vector number 2 (the NMI  vector) is used in this instruction, the 
NMI  interrupt handler is called, but the processor’s NMI-handling hardware is not activated. 

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS
The processor receives exceptions from three sources:

• Processor-detected program-error exceptions.

• Software-generated exceptions.

• Machine-check exceptions.

6.4.1 Program-Error Exceptions
The processor generates one or more exceptions when it detects program errors during the execution in an appli-
cation program or the operating system or executive. Intel 64 and IA-32 architectures define a vector number for 
each processor-detectable exception. Exceptions are classified as faults, traps, and aborts (see Section 6.5, 
“Exception Classifications”).

6.4.2 Software-Generated Exceptions
The INTO, INT 3, and BOUND instructions permit exceptions to be generated in software. These instructions allow 
checks for exception conditions to be performed at points in the instruction stream. For example, INT 3 causes a 
breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software;  but there is a limitation. I f INT n provides a 
vector for one of the architecturally-defined exceptions, the processor generates an interrupt to the correct vector 
(to access the exception handler) but does not push an error code on the stack. This is true even if the associated 
hardware-generated exception normally produces an error code. The exception handler will still attempt to pop an 
error code from the stack while handling the exception. Because no error code was pushed, the handler will pop off 
and discard the EIP instead (in place of the missing error code). This sends the return to the wrong location.

6.4.3 Machine-Check Exceptions
The P6 family and Pentium processors provide both internal and external machine-check mechanisms for checking
the operation of the internal chip hardware and bus transactions. These mechanisms are implementation depen-
dent. When a machine-check error is detected, the processor signals a machine-check exception (vector 18) and 
returns an error code. 

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15, “Machine-Check Architecture,”
for more information about the machine-check mechanism.

6.5 EXCEPTION CLASSIFICATIONS
Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the 
instruction that caused the exception can be restarted without loss of program or task continuity.



Vol. 3A 6-5

INTERRUPT AND EXCEPTION HANDLING

• Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program 
to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to 
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of 
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction 
following the faulting instruction.

• Traps — A trap is an exception that is reported immediately following the execution of the trapping instruction. 
Traps allow execution of a program or task to be continued without loss of program continuity. The return 
address for the trap handler points to the instruction to be executed after the trapping instruction.

• Aborts — An abort is an exception that does not always report the precise location of the instruction causing 
the exception and does not allow a restart of the program or task that caused the exception. Aborts are used 
to report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE
One exception subset normally reported as a fault is not restartable. Such exceptions result in loss 
of some processor state. For example, executing a POPAD instruction where the stack frame 
crosses over the end of the stack segment causes a fault to be reported. In this situation, the 
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD 
instruction had not been executed. However, internal processor state (the general-purpose 
registers) will have been modified. Such cases are considered programming errors. An application 
causing this class of exceptions should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART
To allow the restarting of program or task following the handling of an exception or an interrupt, all exceptions 
(except aborts) are guaranteed to report exceptions on an instruction boundary. All interrupts are guaranteed to be 
taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an exception) points
to the faulting instruction. So, when a program or task is restarted following the handling of a fault, the faulting
instruction is restarted (re-executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example of this type of fault is a page-
fault exception (#PF) that occurs when a program or task references an operand located on a page that is not in 
memory. When a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To insure that the restart is handled trans-
parently to the currently executing program or task, the processor saves the necessary registers and stack pointers
to allow a restart to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the trapping instruction. 
I f a trap is detected during an instruction which transfers execution, the return instruction pointer reflects the 
transfer. For example, if a trap is detected while executing a J MP instruction, the return instruction pointer points 
to the destination of the J MP instruction, not to the next address past the J MP instruction. All trap exceptions allow 
program or task restart with no loss of continuity. For example, the overflow exception is a trap exception. Here, 
the return instruction pointer points to the instruction following the INTO instruction that tested EFLAGS.OF (over-
flow) flag. The trap handler for this exception resolves the overflow condition. Upon return from the trap handler,
program or task execution continues at the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort handlers are designed 
to collect diagnostic information about the state of the processor when the abort exception occurred and then shut 
down the application and system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of continuity. The return
instruction pointer saved for an interrupt points to the next instruction to be executed at the instruction boundary 
where the processor took the interrupt. I f the instruction just executed has a repeat prefix, the interrupt is taken 
at the end of the current iteration with the registers set to execute the next iteration.

The ability of a P6 family processor to speculatively execute instructions does not affect the taking of interrupts by 
the processor. Interrupts are taken at instruction boundaries located during the retirement phase of instruction
execution;  so they are always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-32



6-6 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation about the P6 family processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of prefetching and 
preliminary decoding. With these processors as well, exceptions and interrupts are not signaled until actual “in-
order” execution of the instructions. For a given code sample, the signaling of exceptions occurs uniformly when 
the code is executed on any family of IA-32 processors (except where new exceptions or new opcodes have been
defined).

6.7 NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NMI) can be generated in either of two ways:

• External hardware asserts the NMI  pin.

• The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and 
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI .

When the processor receives a NMI from either of these sources, the processor handles it immediately by calling 
the NMI  handler pointed to by interrupt vector number 2. The processor also invokes certain hardware conditions 
to insure that no other interrupts, including NMI  interrupts, are received until the NMI  handler has completed 
executing (see Section 6.7.1, “Handling Multiple NMIs”).

Also, when an NMI  is received from either of the above sources, it cannot be masked by the IF flag in the EFLAGS 
register.

I t is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke the NMI  interrupt 
handler;  however, this interrupt will not truly be an NMI  interrupt. A true NMI  interrupt that activates the 
processor’s NMI-handling hardware can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMIs
While an NMI  interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next execu-
tion of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI  handler. I t is recommended 
that the NMI  interrupt handler be accessed through an interrupt gate to disable maskable hardware interrupts (see 
Section 6.8.1, “Masking Maskable Hardware Interrupts”). 

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated (see 
Section 20.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler is 
invoked.

6.8 ENABLING AND DISABLING INTERRUPTS
The processor inhibits the generation of some interrupts, depending on the state of the processor and of the IF and 
RF flags in the EFLAGS register, as described in the following sections.

6.8.1 Masking Maskable Hardware Interrupts
The IF flag can disable the servicing of maskable hardware interrupts received on the processor’s INTR pin or 
through the local APIC (see Section 6.3.2, “Maskable Hardware Interrupts”). When the IF flag is clear, the
processor inhibits interrupts delivered to the INTR pin or through the local APIC from generating an internal inter-
rupt request;  when the IF flag is set, interrupts delivered to the INTR or through the local APIC pin are processed 
as normal external interrupts. 

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery mode NMI 
messages delivered through the local APIC, nor does it affect processor generated exceptions. As with the other
flags in the EFLAGS register, the processor clears the IF flag in response to a hardware reset.



Vol. 3A 6-7

INTERRUPT AND EXCEPTION HANDLING

The fact that the group of maskable hardware interrupts includes the reserved interrupt and exception vectors 0 
through 32 can potentially cause confusion. Architecturally, when the IF flag is set, an interrupt for any of the 
vectors from 0 through 32 can be delivered to the processor through the INTR pin and any of the vectors from 16 
through 32 can be delivered through the local APIC. The processor will then generate an interrupt and call the
interrupt or exception handler pointed to by the vector number. So for example, it is possible to invoke the page-
fault handler through the INTR pin (by means of vector 14);  however, this is not a true page-fault exception. I t is 
an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated Exceptions”), when an inter-
rupt is generated through the INTR pin to an exception vector, the processor does not push an error code on the 
stack, so the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI  (set interrupt-enable flag) and CLI  (clear interrupt-enable flag) 
instructions, respectively. These instructions may be executed only if the CPL is equal to or less than the IOPL. A 
general-protection exception (#GP) is generated if they are executed when the CPL is greater than the IOPL. (The
effect of the IOPL on these instructions is modified slightly when the virtual mode extension is enabled by setting 
the VME flag in control register CR4: see Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”
Behavior is also impacted by the PVI  flag:  see Section 20.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:

• The PUSHF instruction stores all flags on the stack, where they can be examined and modified. The POPF 
instruction can be used to load the modified flags back into the EFLAGS register.

• Task switches and the POPF and IRET instructions load the EFLAGS register;  therefore, they can be used to 
modify the setting of the IF flag.

• When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared, which disables 
maskable hardware interrupts. (I f an interrupt is handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI , STI , PUSHF, POPF, and IRET instructions in Chapter 3, “Instruction Set Reference, 
A-M,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, and Chapter 4, “Instruc-
tion Set Reference, N-Z,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for a 
detailed description of the operations these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints
The RF (resume) flag in the EFLAGS register controls the response of the processor to instruction-breakpoint condi-
tions (see the description of the RF flag in Section 2.3, “System Flags and Fields in the EFLAGS Register”). 

When set, it prevents an instruction breakpoint from generating a debug exception (#DB);  when clear, instruction 
breakpoints will generate debug exceptions. The primary function of the RF flag is to prevent the processor from 
going into a debug exception loop on an instruction-breakpoint. See Section 17.3.1.1, “Instruction-Breakpoint 
Exception Condition,” for more information on the use of this flag.

6.8.3 Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

I f an interrupt or exception occurs after the segment selector has been loaded into the SS register but before the 
ESP register has been loaded, these two parts of the logical address into the stack space are inconsistent for the 
duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap exceptions after 
either a MOV to SS instruction or a POP to SS instruction, until the instruction boundary following the next instruc-
tion is reached. All other faults may still be generated. I f the LSS instruction is used to modify the contents of the 
SS register (which is the recommended method of modifying this register), this problem does not occur.



6-8 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 
I f more than one exception or interrupt is pending at an instruction boundary, the processor services them in a 
predictable order. Table 6-2 shows the priority among classes of exception and interrupt sources. 

While priority among these classes listed in Table 6-2 is consistent throughout the architecture, exceptions within
each class are implementation-dependent and may vary from processor to processor. The processor first services 

Table 6-2.  Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks

- RESET

- Machine Check

2 Trap on Task Switch

- T flag in TSS is set

3 External Hardware Interventions

- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction

- Breakpoints

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

5 Nonmaskable Interrupts (NMI) 1

6 Maskable Hardware Interrupts 1

7 Code Breakpoint Fault

8 Faults from Fetching Next Instruction

- Code-Segment Limit Violation

- Code Page Fault

9 Faults from Decoding the Next Instruction

- Instruction length > 15 bytes 

- Invalid Opcode

- Coprocessor Not Available

10 (Lowest) Faults on Executing an Instruction

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception

- SIMD floating-point exception

- Virtualization exception

NOTE

1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.



Vol. 3A 6-9

INTERRUPT AND EXCEPTION HANDLING

a pending exception or interrupt from the class which has the highest priority, transferring execution to the first 
instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held pending. 
Discarded exceptions are re-generated when the interrupt handler returns execution to the point in the program or 
task where the exceptions and/or interrupts occurred. 

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)
The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate descriptor for the
procedure or task used to service the associated exception or interrupt. Like the GDT and LDTs, the IDT is an array 
of 8-byte descriptors (in protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. To
form an index into the IDT, the processor scales the exception or interrupt vector by eight (the number of bytes in
a gate descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain more than 
256 descriptors. I t can contain fewer than 256 descriptors, because descriptors are required only for the interrupt 
and exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag for the 
descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance of cache line 
fills. The limit value is expressed in bytes and is added to the base address to get the address of the last valid byte. 
A limit value of 0 results in exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should 
always be one less than an integral multiple of eight (that is, 8N –  1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1, the processor locates the IDT 
using the IDTR register. This register holds both a 32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents of the IDTR 
register, respectively. The LIDT instruction loads the IDTR register with the base address and limit held in a 
memory operand. This instruction can be executed only when the CPL is 0. I t normally is used by the initialization 
code of an operating system when creating an IDT. An operating system also may use it to change from one IDT to 
another. The SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can be 
executed at any privilege level. 

I f a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP) is generated.

NOTE
Because interrupts are delivered to the processor core only once, an incorrectly configured IDT 
could result in incomplete interrupt handling and/or the blocking of interrupt delivery.

IA-32 architecture rules need to be followed for setting up IDTR base/ limit/access fields and each 
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit 
referencing of the destination code segment through the GDT or LDT and accessing the stack.



6-10 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.11 IDT DESCRIPTORS
The IDT may contain any of three kinds of gate descriptors:

• Task-gate descriptor

• Interrupt-gate descriptor

• Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task 
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate 
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task. 

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call Gates”). They contain a far pointer 
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an 
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the 
EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

Figure 6-1.  Relationship of the IDTR and IDT

IDT LimitIDT Base Address

+
Interrupt

Descriptor Table (IDT)

Gate for

0

IDTR Register

Interrupt #n

Gate for
Interrupt #3

Gate for
Interrupt #2

Gate for
Interrupt #1

151647

031
0

8

16

(n−1)∗8



Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

6.12 EXCEPTION AND INTERRUPT HANDLING
The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL 
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. I f the index points to an interrupt gate or trap gate, 
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section 
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). I f index points to a task 
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL 
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures
An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of 
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for 
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to 
the beginning of the exception- or interrupt-handling procedure.

Figure 6-2.  IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

011D

Interrupt Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

31 16 15 1314 12 8 7 0

P
D
P
L

0 4

31 16 15 0

TSS Segment Selector 0

1010

Task Gate

45

0   0   0

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

111D

Trap Gate
45

0   0   0

Reserved

Size of gate: 1 = 32 bits; 0 = 16 bitsD



6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:

• I f the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs. 
When the stack switch occurs:  

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS 
for the currently executing task. On this new stack, the processor pushes the stack segment selector and 
stack pointer of the interrupted procedure. 

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see 
Figures 6-4).

c. I f an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.

• I f the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see
Figures 6-4).

b. I f an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

Figure 6-3.  Interrupt Procedure Call

IDT

Interrupt or

Code Segment

Segment Selector

GDT or LDT

Segment

Interrupt
Vector

Base
Address

Destination

Procedure
Interrupt

+

Descriptor

Trap Gate

Offset



Vol. 3A 6-13

INTERRUPT AND EXCEPTION HANDLING

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. 
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS 
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL 
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the 
IRET instruction.

I f a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted 
procedure’s stack on the return.

6.12.1.1  Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary 
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call 
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a 
less privileged code segment (numerically greater privilege level) than the CPL. 

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for 
exception- and interrupt-handler procedures is different in the following ways:

• Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and 
interrupt handlers.

• The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an
INT n, INT 3, or INTO instruction. Here, the CPL must be less than or equal to the DPL of the gate. This 
restriction prevents application programs or procedures running at privilege level 3 from using a software 
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are
placed in more privileged code segments (numerically lower privilege level). For hardware-generated 
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Figure 6-4.  Stack Usage on Transfers to Interrupt and Exception-Handling Routines

 CS

Error Code

EFLAGS
CS

 EIP
ESP After
Transfer to Handler

Error Code

ESP Before
Transfer to Handler

 EFLAGS

 EIP

 SS
 ESP

Stack Usage with No
Privilege-Level Change

Stack Usage with
Privilege-Level Change

Interrupted Procedure�s 

Interrupted Procedure�s
and Handler�s Stack

Handler�s Stack

ESP After
Transfer to Handler

Transfer to Handler
ESP Before

Stack



6-14 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Because exceptions and interrupts generally do not occur at predictable times, these privilege rules effectively 
impose restrictions on the privilege levels at which exception and interrupt- handling procedures can run. Either of 
the following techniques can be used to avoid privilege-level violations.

• The exception or interrupt handler can be placed in a conforming code segment. This technique can be used for 
handlers that only need to access data available on the stack (for example, divide error exceptions). I f the 
handler needs data from a data segment, the data segment needs to be accessible from privilege level 3, which 
would make it unprotected.

• The handler can be placed in a nonconforming code segment with privilege level 0. This handler would always 
run, regardless of the CPL that the interrupted program or task is running at.

6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, the processor 
clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS register on the stack. (On calls 
to exception and interrupt handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, after 
they are saved on the stack.) Clearing the TF flag prevents instruction tracing from affecting interrupt response. A 
subsequent IRET instruction restores the TF (and VM, RF, and NT) flags to the values in the saved contents of the 
EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles the IF flag in the 
EFLAGS register. When accessing an exception- or interrupt-handling procedure through an interrupt gate, the 
processor clears the IF flag to prevent other interrupts from interfering with the current interrupt handler. A subse-
quent IRET instruction restores the IF flag to its value in the saved contents of the EFLAGS register on the stack. 
Accessing a handler procedure through a trap gate does not affect the IF flag.

6.12.2 Interrupt Tasks
When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch results. Handling 
an exception or interrupt with a separate task offers several advantages:

• The entire context of the interrupted program or task is saved automatically.

• A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or interrupt. I f 
an exception or interrupt occurs when the current privilege level 0 stack is corrupted, accessing the handler 
through a task gate can prevent a system crash by providing the handler with a new privilege level 0 stack.

• The handler can be further isolated from other tasks by giving it a separate address space. This is done by 
giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine state that must be 
saved on a task switch makes it slower than using an interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A switch to the handler task is 
handled in the same manner as an ordinary task switch (see Section 7.3, “Task Switching”). The link back to the 
interrupted task is stored in the previous task link field of the handler task’s TSS. I f an exception caused an error 
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually two mechanisms 
that can be used to dispatch tasks:  the software scheduler (part of the operating system) and the hardware sched-
uler (part of the processor's interrupt mechanism). The software scheduler needs to accommodate interrupt tasks 
that may be dispatched when interrupts are enabled.



Vol. 3A 6-15

INTERRUPT AND EXCEPTION HANDLING

NOTE
Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task must disable 
interrupts between the time it completes handling the interrupt and the time it executes the IRET
instruction. This action prevents another interrupt from occurring while the interrupt task’s TSS is
still marked busy, which would cause a general-protection (#GP) exception.

6.13 ERROR CODE
When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error 
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format 
shown in Figure 6-6. The error code resembles a segment selector;  however, instead of a TI  flag and RPL field, the 
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an 
event external to the program, such as an interrupt or an earlier exception.

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers 
to a gate descriptor in the IDT;  when clear, indicates that the index refers to a descriptor in the GDT 
or the current LDT.

TI GDT/ LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI  flag indicates that the 
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it indi-
cates that the index refers to a descriptor in the current GDT.

Figure 6-5.  Interrupt Task Switch

IDT

Task Gate

TSS for Interrupt-

TSS Selector

GDT

TSS Descriptor

Interrupt
Vector

TSS
Base
Address

Handling Task



6-16 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate 
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly 
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null
segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault Excep-
tion (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task 
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note that 
the error code is not popped when the IRET instruction is executed to return from an exception handler, so the 
handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0] 
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE
In 64-bit mode, interrupt and exception handling is similar to what has been described for non-64-bit modes. The 
following are the exceptions:

• All interrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI  handler).

• The size of interrupt-stack pushes is fixed at 64 bits;  and the processor uses 8-byte, zero extended stores.

• The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this push is conditional 
and based on a change in current privilege level (CPL).

• The new SS is set to NULL if there is a change in CPL.

• IRET behavior changes.

• There is a new interrupt stack-switch mechanism.

• The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT
Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer (RIP). The 64-
bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine to be located anywhere in the
linear-address space. See Figure 6-7.

Figure 6-6.  Error Code

31 0

Reserved
I
D
T

T
I

123

Segment Selector Index
E
X
T



Vol. 3A 6-17

INTERRUPT AND EXCEPTION HANDLING

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a 
64-bit mode interrupt gate are similar but not identical to legacy 32-bit interrupt gates. The type field (bits 11:8 in 
bytes 7:4) is described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack 
switching mechanisms described in Section 6.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of 
the target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is generated if 
software attempts to reference an interrupt gate with a target RIP that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). I f 
the target is not a 64-bit code segment, a general-protection exception (#GP) is generated with the IDT vector 
number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode). 
Legacy 32-bit interrupt or trap gate types (0EH or 0FH) are redefined in IA-32e mode as 64-bit interrupt and trap
gate types. No 32-bit interrupt or trap gate type exists in IA-32e mode. I f a reference is made to a 16-bit interrupt 
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame
In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes. 
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight 
bytes. This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally, 
rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-
stackframe size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the 
INTn instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes a stack frame to 
be pushed. This causes the stack frame and succeeding pushes done by an interrupt handler to be at arbitrary 
alignments. In IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack 
frame itself is aligned on a 16-byte boundary when the interrupt handler is called. The processor can arbitrarily 
realign the new RSP on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the 
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts 
are re-enabled. This allows the stack to be formatted for optimal storage of 16-byte XMM registers, which enables 

Figure 6-7.  64-Bit IDT Gate Descriptors

31 16 15 1314 12 8 7 0

POffset 31..16
D
P
L

0 4

31 16 15 0

Segment Selector Offset 15..0 0

TYPE

Interrupt/Trap Gate

DPL
Offset
P
Selector

Descriptor Privilege Level
Offset to procedure entry point
Segment Present flag
Segment Selector for destination code segment

45

0   0   0

31 0

Offset 63..32 8

31 0

12

11

IST0 0

2

Reserved

IST Interrupt Stack Table



6-18 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

the interrupt handler to use faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and 
restore XMM registers. 

Although the RSP alignment is always performed when LMA = 1, it is only of consequence for the kernel-mode case
where there is no stack switch or IST used. For a stack switch or IST, the OS would have presumably put suitably 
aligned RSP values in the TSS.

6.14.3 IRET in IA-32e Mode 
In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this requirement. The
stack is formatted in such a way that for actions where IRET is required, the 8-byte IRET operand size works 
correctly. 

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte items 
off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop is 
determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to 
execute properly in compatibility mode when using the IRET instruction. 64-bit interrupt service routines that exit 
with an IRET unconditionally pop SS:RSP off of the interrupt stack frame, even if the target code segment is 
running in 64-bit mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. I f the target mode is 64-bit mode and 
the target CPL <> 3, IRET allows SS to be loaded with a NULL selector. As part of the stack switch mechanism, an
interrupt or exception sets the new SS to NULL, instead of fetching a new SS selector from the TSS and loading the 
corresponding descriptor from the GDT or LDT. The new SS selector is set to NULL in order to properly handle
returns from subsequent nested far transfers. I f the called procedure itself is interrupted, the NULL SS is pushed on 
the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to load 
a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode 
The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt. The 
64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mechanism 
and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change (resulting from 
an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. The new
SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in 
order to handle nested far transfers (far CALL, INT, interrupts and exceptions). The old SS and RSP are saved on 
the new stack (Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS
register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not 
loaded from the TSS. Instead, the new SS is forced to NULL.



Vol. 3A 6-19

INTERRUPT AND EXCEPTION HANDLING

6.14.5 Interrupt Stack Table 
In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy 
stack-switching mechanism described above. This mechanism unconditionally switches stacks when it is enabled. 
I t can be enabled on an individual interrupt-vector basis using a field in the IDT entry. This means that some inter-
rupt vectors can use the modified legacy mechanism and others can use the IST mechanism. 

The IST mechanism is only available in IA-32e mode. I t is part of the 64-bit mode TSS. The motivation for the IST 
mechanism is to provide a method for specific interrupts (such as NMI , double-fault, and machine-check) to always 
execute on a known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However, the legacy 
task-switch mechanism is not supported in IA-32e mode. 

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced by an interrupt-gate 
descriptor in the interrupt-descriptor table (IDT);  see Figure 6-7. The gate descriptor contains a 3-bit IST index 
field that provides an offset into the IST section of the TSS. Using the IST mechanism, the processor loads the 
value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set to the new 
CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as 
normal. I f the IST index is zero, the modified legacy stack-switching mechanism described above is used.

6.15 EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. They are arranged in the 
order of vector numbers. The information contained in these sections are as follows:

• Exception Class — Indicates whether the exception class is a fault, trap, or abort type. Some exceptions can 
be either a fault or trap type, depending on when the error condition is detected. (This section is not applicable 
to interrupts.)

• Description — Gives a general description of the purpose of the exception or interrupt type. I t also describes 
how the processor handles the exception or interrupt.

• Exception Error Code — Indicates whether an error code is saved for the exception. I f one is saved, the 
contents of the error code are described. (This section is not applicable to interrupts.)

• Saved I nstruction Pointer — Describes which instruction the saved (or return) instruction pointer points to. 
I t also indicates whether the pointer can be used to restart a faulting instruction.

• Program State Change — Describes the effects of the exception or interrupt on the state of the currently 
running program or task and the possibilities of restarting the program or task without loss of continuity.

Figure 6-8.  IA-32e Mode Stack Usage After Privilege Level Change

 CS

Error Code

 RFLAGS

 RIP

 SS
 RSP

Stack Usage with
Privilege-Level Change

Handler�s Stack

Stack Pointer After
Transfer to Handler

 CS

Error Code

 EFLAGS

 EIP

 SS
 ESP

Handler�s Stack

Legacy Mode IA-32e Mode

0
+4
+8

+12
+16
+20

0
+8

+16
+24
+32
+40


