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Abstract

In this lecture we discuss common concepts in representation learn-
ing, comparing strategies using supervised and unsupervised learning.
We discuss what makes a representation effective, as well as common ex-
amples of representation learning in NLP and graphs using word embed-
dings.

1 Review of Last Class

1.1 Analyzing gradient descent

For infinitely wide neural nets, the kernel remains ”fixed”. Therefore, neural
network learning is equivalent to kernel regression. [Jacot et al.] Recall: We can do this by viewing gradi-

ent descent as kernel regression for a time-
varying kernel.

1.2 Neural Networks as Feature Learning or Representation Learning

Neural Networks transform inputs into feature space embeddings. Suppose
layers f1, f2, . . . fn−1, then layer fn−1 captures the most important ”features”
or ”semantic properties” of the data that are used to predict fn. Very often,
fn−1 is relatively sparse, even if x is high dimensional. This is an excellent way
to represent x in a lower space.

These are very useful even beyond classification (e.g. image captions, transfer
learning). We can use fn−1 and learn how to predict image features based
upon it, known as image captioning.

Consider another strategy called transfer learning. Suppose we have trained a
neural network for one task. Then, we use it on another similar task that has
insufficient training data. We can hypothesize that the same neural net could
still be useful on another similar task with not much additional training.

2 What makes a representation good?

Below is a list of generally good traits that a representation can have:

• ”Auto-encoder” view: Representation should allow us to ”approximately
recover” input (i.e. it is somewhat invertible). This tends to hold true of-
ten for unsupervised learning. If information is invertible, then as much
information is being ”represented” as possible.

• Information ”bottleneck”: noise should not affect representation, but a
large change should.
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4. Representation Learning in NLP

• Contrastive (for classification). Large changes result in large differences
in output.

• ”Disentangled” or orthogonal. Very easy to determine between two in-
puts.

• Sparse ”explanations” for phenomena.

• Hierarchically organized, explanatory.

• Leverage domain knowledge. This is especially important in recent times.

Supervised learning is contrastive, has better accuracy for solving specific
tasks, and requires no special training. However, it tends to have issues gener-
alizing well. In supervised learning, we come in with prior knowledge about
the data and can be contrastive about different targets. This is excellent for
tasks where we know exactly what we want to solve.

Unsupersvised learning generalizes to many tasks and does not require care-
ful data collection. However, it is unclear what approach to take to learning or
what the initial objective is. Unsupervised learning only gives us a map, it’s
up to us to determine how to use the map. It is often a focus for research for
this reason, as there are many new approaches that can be applied.

3 Unsupervised Representation Learning

3.1 Classic approaches (somewhat linear)

This includes manual feature engineering, autoencoders, and sparse coding.

3.1 definition. Sparse coding is a way to encode many vectors in a smaller
space. Given input x1, x2, . . . , xn ∈ Rd, we want a dictionary v1, . . . , vm ∈ Rd

such that for each xi, xi ≈ ∑m
j=1 a(i)j vj.

This approach is nice for the early layers of a neural network, but tends to be
less useful for deeper networks.

3.2 Modern approach

This includes self-supervised learning, invariances, and data augmentation.

Neural networks are excellent at supervised learning, can we leverage super-
vised learning to improve unsupervised learning? This is called self-supervised
learning. Very highly active area of research.

Example: NLP tasks (fill in the blanks). We have a lot of unlabeled data. We
mask a small portion of the data (example: one word in a sentence) and then
try to predict the word using the rest of the sentence. This can also be applied
to images where we mask a few pixels and then learn them.

Rotation prediction: An image and its slightly rotated version should have the
same representation. This is an example of an invariance.

4 Representation Learning in NLP

These approaches are based upon Firth’s Hypothesis: ”A word is defined by1950s result in NLP
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the company it keeps”. The general strategy is to look at sequences of words,
otherwise known as ”N-grams”.

4.1 definition. This approach is called Latent Semantic Indexing. An ”N-
gram” is an N-length sequence of words. For each wi, look at how frequently
it occurs with wj within N words. αi,j is the frequency with which wi and wj
appear within the same N-gram.

Consider the matrix M containing all αi,j. By SVD low-rank approximation,
M ≈ UV, where U ∈ RNxk and V ∈ RkxN . Then, for any αi,j, we have vectors
ui, uj with the property that αi,j =< ui, uj >.

This is very useful for keeping low-rank approximations of any αi,j. Nowa-
days, we don’t usually build this full matrix. Instead, this is used as the basis
for a neural network model.

5 Representation Learning in Graphs

Suppose we have a graph G. Spectral clustering and performing the SVD on
an adjacency matrix are two approaches to analyzing G.

These two strategies have a problem: they are based directly on the adjacency
matrix and therefore can only look at direct neighborhoods. Neighborhoods
tell us that two points are similar, but this does not capture all similarity
information in the graph. A vertex two or three neighbors away from vertex v
should still be similar to v, but is not captured by adjacency matrix directly.

Solution: view a graph as producing N-grams. Perform many random walks
on the graph to determine N-grams. Then, treat these N-grams as an NLP
problem and learn what makes the vertices similar.

We may say a bit more on this in the next lecture, as we ran out of time.
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