THEORY OF MACHINE LEARNING

LECTURE 25

ROBUSTNESS (PART 2)

ANNOUNCEMENTS

- Homework 4 - due last on Tuesday Apr 26
- Discussion

In In uses in analyzing convergence of a non -convex opt problem.

- Project presentations: starting next week!
- Please sign up! \rightarrow On Tuesday, saw how to structure your pres.
- Optional - submit presentation pdf on canvas for smoother transitions

RECAP: LEARNING IN THE PRESENCE OF ADVERSARIES

- Training time versus test time
- Training time: adversary corrupts small fraction of inputs

- Test time: adversary evaluates model on inputs with "imperceptible error" added (can be viewed as input distribution vs test)
- Former has multiple models - Benign noise, Huber's corruption model, data poisoning
- Field of robust statistics

ALGORITHMS AT HIGH LEVEL

- Use entire data, but limit influence of outliers /un noisy points.
- Median instead of mean (low dimensions)
- Truncated gradients \int (clustering, mean estimation)
- "Inlier pursuit": key idea is that inliers "reinforce" one another
- RANSAC algorithm
- More sophisticated "filtering" algorithms

- Main problem of study - robust mean estimation
- Can be used as a subroutine in other algorithms (use robust mean estimation for gradients!)

ROBUSTNESS OF TRAINED MODELS

- "Intriguing" property of deep learning models - models that generalize well are surprisingly brittle! [Szegedy et al. 2013]

- Obvious consequences
- Why possible? (statistical explanation)

ROBUSTNESS OF TRAINED MODELS
input $x \rightarrow m \rightarrow y$.

- How can we "generate" such adversarial examples? examples that look "nomad" but fool the model
- Now standard approaches
- Fast Gradient Sign Method (FGSM) - way to use the gradients to carefully choose direction of movement
- Projected Gradient Descent (PGD) - iterative procedure to "maximally" affect loss function (implemented in standard
\rightarrow Same model arch; Image net. to model..
"generaligalsle" adversaria examples.

WHY DO ADVERSARIAL EXAMPLES EXIST?

- I.e., why only for deep models?

Margin theory
$100 \times 100 \rightarrow d=10^{4 .}$ inputs in \mathbb{R}^{d}.
$\cdots+$

$\because\left(\frac{1}{\varepsilon}\right)^{d}$ points are necessary for an ε-net.

- Suppose I want an input pt that is within ε of every point on the sphere.
"PROVABLY" DEFENDING?
\forall "real inputs", $x, x<x+\delta$ must have) Same classification, as long as $\|\delta\|_{\infty} \leq \varepsilon$
- Can we show that no corruption of small magnitude can hurt the classifier?
- "Adversarial training": minimize $\underset{x \sim D_{\text {inputs }}}{\mathbb{E}} \ell\left(x, y ; L_{l a b e l}(x)\right.$ parameters.
- Instead of minimizing empirical risk, minimize empirical "robust risk"
min \mathbb{E} max $8(x+5, \operatorname{sun}(0)$ in $)$.
\longrightarrow Saddle point opts.
- How to solve this optimization problem? (uses theorem of Danskin - gives a way of solving min-max opt problems) \rightarrow [Mary, ..'2018].
- Do we need "richer models"?

Trade off between robustures \& "regular" accuracy.

Tradeoff between robustness \& accuracy

$$
x_{1} x_{2}, \ldots, x_{N}
$$

clean training
data.
$\xrightarrow[\text { Model } M]{\rightarrow}$ clean accuracy. 80\% $\longrightarrow \begin{gathered}\text { noisy } \\ \text { accuraby }\end{gathered}$ lo. $^{\circ}$. Model M^{\prime} trained using min max training is noisy $\rightarrow 60 \%$. clean accuracy $\rightarrow 65 \%$. accury
"PROVABLY" DEFENDING - CONNECTION TO PRIVACY

Differential privacy:
Clever formulation
by [work, Nissim, Nor) Smith.

Answer $(x) \simeq$ Answer $(x+\delta)$.
suppose my "trusted party" ensures that \forall query that analyses gives,
Answer (x) \& Answer $\left(x^{\prime}\right.$, where you flipped are indistinguishelde you bit).

MORE NUGGETS

- Do we need more data for obtaining robust models?
- State of the art accuracies
- Expressibility vs trainability vs robustness

