THEORY OF MACHINE LEARNING

LECTURE 25

ROBUSTNESS (PART 2)

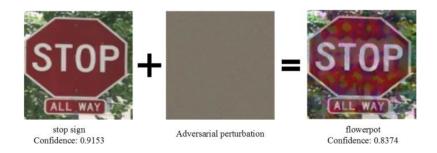
ANNOUNCEMENTS

- Homework 4 due last on Tuesday Apr 26
 - Discussion
- Project presentations: starting next week!
 - Please sign up!
 - Optional submit presentation pdf on canvas for smoother transitions

RECAP: LEARNING IN THE PRESENCE OF ADVERSARIES

Training time versus test time

- Training time: adversary corrupts small fraction of inputs
- <u>Test time</u>: adversary evaluates model on inputs with "imperceptible error" added (can be viewed as input distribution vs test)


- Former has multiple models Benign noise, Huber's corruption model, data poisoning
- Field of robust statistics

ALGORITHMS AT HIGH LEVEL

- Use entire data, but limit influence of outliers
 - Median instead of mean (low dimensions)
 - Truncated gradients
- "Inlier pursuit": key idea is that inliers "reinforce" one another
 - RANSAC algorithm
 - More sophisticated "filtering" algorithms
- Main problem of study robust mean estimation
 - Can be used as a subroutine in other algorithms (use robust mean estimation for gradients!)

ROBUSTNESS OF TRAINED MODELS

 "Intriguing" property of deep learning models - models that generalize well are surprisingly brittle! [Szegedy et al. 2013]

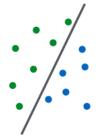
- Obvious consequences
- Why possible? (statistical explanation)

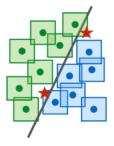
ROBUSTNESS OF TRAINED MODELS

How can we "generate" such adversarial examples?

- Now standard approaches
 - Fast Gradient Sign Method (FGSM) way to use the gradients to carefully choose direction of movement
 - Projected Gradient Descent (PGD) iterative procedure to "maximally" affect loss function

WHY DO ADVERSARIAL EXAMPLES EXIST?


I.e., why only for deep models?


Margin theory

"PROVABLY" DEFENDING?

- Can we show that no corruption of small magnitude can hurt the classifier?
- "Adversarial training":
 - Instead of minimizing empirical risk, minimize empirical "robust risk"

- How to solve this optimization problem? (uses theorem of Danskin gives a way of solving min-max opt problems)
- Do we need "richer models"?

"PROVABLY" DEFENDING - CONNECTION TO PRIVACY

MORE NUGGETS

- Do we need more data for obtaining robust models?
- State of the art accuracies
- Expressibility vs trainability vs robustness