THEORY OF MACHINE LEARNING

LECTURE 24

ROBUSTNESS

ANNOUNCEMENTS

- Homework 4 - out soon, due ~ 2 weeks
- Project presentations: starting next week! (~18 projects)
- Dates: April 19, 22, 26 (钩projects /class), couple online

$$
\text { each } \sim 10-12 \text { minutes }
$$

- This week and next: representation learning, nobustness

Presentation template:
why?
\rightarrow \{Background: -motivation, what the paper is about. $\stackrel{\text { sins. }}{\rightarrow \text { background: }}$ - where it fits in with course material.
\rightarrow Main result $(s) \rightarrow$ present in $3-4 \mathrm{~min}$.
\rightarrow might need to form "informal" versions or special cares.
\rightarrow Results (experiments/proofs): $2-3 \mathrm{~min}$.
[be prepared for interruptions if something is not clear..].

LAST WEEK

- NNs and "representation learning"
- Intermediate layers of NN
$-$ NN transforms inputs -> "feature space embeddings"
- Supervised vs unsupervised representations (when is a rep "good")

```
Self-supervision (SSL)
(using supervised learning to do unsupervised learning)
```

- Representations in NLP - Given lots of test data, find "representation"

Embeddings for words (Firth's hypothesis, n-grams)
that capture meanings of

- Embeddings for nodes in a graph - SSL is better than classical
(social neturorks)
[Finding good "cuts" in graphs.]

LEARNING IN THE PRESENCE OF ADVERSARIES

- Training time versus test time
\qquad (introducing now n:
ρ mistanding.)

- Training time: adversary corrupts small fraction of inputs

- Test time: adversary evaluates model on inputs with "imperceptible error" added
(can be viewed as input distribution vs test)

challenge mainly
 for NN models.

NOISE IN TRAINING DATA

- "Benign" noise: (common in stats).
- Very common - standard regression analysis, clustering, label noise in supervised learning, ... (id mean zero noise)
- Less common - few (random subset) of points are "badly" corrupted (Huber's contamination model)
- Adversarial noise (data poisoning)
- Carefully chosen subset of points is corrupted

- Even basic problems are hard! (robust mean estimation for Gaussian data, robust PCA)
- Lot of work on robust mean estimation (why?)

$$
\begin{aligned}
& \frac{\text { unknown distr with bounded variance (or second }}{\text { moments.) }} \text { (} D \text {. } \\
& \text { given } x_{1}, x_{2}, \ldots, x_{\sim} \sim D^{\varepsilon} \text {, find } \mu \text { of } D \text {. }
\end{aligned}
$$

D. with effaction corrupted.
\rightarrow Solving some other loss min problem can be reduced (in practice) to mean estimation).

- gradient descent can be viewed as a sequence of mean estimation steps.
\rightarrow (SEVER: Steinhardt, Diakonikolas, et al.)

CLASSIC ALGORITHMS

- Mean estimation in low dimensions - median vs mean

\rightarrow median \rightarrow within fixed distance of
mean.

$$
D^{\varepsilon \cdot}\left(\begin{array}{c}
\text { always think } \\
\text { of } \left.\varepsilon \text { as } 1 \%_{0}\right)
\end{array}\right.
$$

- "Inlier pursuit": key idea is that inlier "reinforce" one another

Say we have a guess for μ, σ \rightarrow check for "consistency" $\rightarrow \dot{\bar{e}}$, can we remove $1 \%_{0}$ of pts \& get
 new guess for μ, σ.

PROBLEM OF DIMENSIONALITY

$$
\left[\begin{array}{l}
\text { Diakonikolas et al. 2016. } \\
\text { Li et al. } 2016 .
\end{array}\right] \text {. }
$$

- High dimensional mean estimation
- Clean data $=n$ id samples from Gaussian in d dimensions (mean μ, covariance matrix Σ)
- Corrupted data $=\epsilon n$ points from clean data are replaced with some adversarially chosen points (in R^{d})
- Can you recover the parameters μ^{\prime} and Σ^{\prime} so that $N(\mu, \Sigma) \approx N\left(\mu^{\prime}, \Sigma^{\prime}\right)$ [Can show that if you allow exponential time, this can be done to $O(\epsilon)$, if n is big enough (polynomial in d)]
- Simpler problem: assume $\Sigma=I$

Can we recover $\mu, \& \sum$ well?
\qquad
 find. d / ε points

$$
|\underset{\substack{ \\\mu}}{ } \mu| \sim \sqrt{d} \varepsilon
$$

estimator

$$
\leadsto \frac{\log x}{\frac{8}{2}} .
$$

$$
\frac{1}{\delta} \cdot \varepsilon
$$

ROLE OF DIMENSION

- In 1-D, problem fairly easy
- What about d dimensions?
- Main result [Diakonikolas et al. 2016, Lai et al. 2016]: there exists an algorithm that can efficiently recover the mean to error $\sim \sqrt{\log 1 / \epsilon}$
- Key idea: "filtering"

- Can also be extended to arbitrary distributions (not just Gaussian, as long as variance is bounded)

