THEORY OF MACHINE LEARNING

LECTURE 24

ROBUSTNESS

ANNOUNCEMENTS

- Homework 4 out soon, due ~ 2 weeks
- Project presentations: starting next week! (~18 projects)
 - <u>Dates</u>: April 19, 22, 26 (5 projects /class), couple online
- This week and next: representation learning, robustness

LAST WEEK

- NNs and "representation learning"
 - Intermediate layers of NN
 - NN transforms inputs -> "feature space embeddings"
 - Supervised vs unsupervised representations (when is a rep "good")
 - Self-supervision
 (using supervised learning to do unsupervised learning)
- Representations in NLP
 - Embeddings for words (Firth's hypothesis, n-grams)
 - Embeddings for nodes in a graph

LEARNING IN THE PRESENCE OF ADVERSARIES

Training time versus test time

- Training time: adversary corrupts small fraction of inputs
- <u>Test time</u>: adversary evaluates model on inputs with "imperceptible error" added (can be viewed as input distribution vs test)

NOISE IN TRAINING DATA

- "Benign" noise:
 - Very common standard regression analysis, clustering, label noise in supervised learning, ...
 (iid mean zero noise)
 - Less common few (random subset) of points are "badly" corrupted (Huber's contamination model)
- Adversarial noise (data poisoning)
 - Carefully chosen subset of points is corrupted
 - Even basic problems are hard! (robust mean estimation for Gaussian data, robust PCA)
 - Lot of work on robust mean estimation (why?)

CLASSIC ALGORITHMS

Mean estimation in low dimensions - median vs mean

- "Inlier pursuit": key idea is that inliers "reinforce" one another
 - RANSAC algorithm

PROBLEM OF DIMENSIONALITY

- High dimensional mean estimation
 - Clean data = n iid samples from Gaussian in d dimensions (mean μ , covariance matrix Σ)
 - Corrupted data = ϵn points from clean data are replaced with some adversarially chosen points (in R^d)
- Can you recover the parameters μ' and Σ' so that $N(\mu, \Sigma) \approx N(\mu', \Sigma')$ [Can show that if you allow exponential time, this can be done to $O(\epsilon)$, if n is big enough (polynomial in d)]
- Simpler problem: assume $\Sigma = I$

ROLE OF DIMENSION

- In 1-D, problem fairly easy
- What about d dimensions?

- Main result [Diakonikolas et al. 2016, Lai et al. 2016]: there exists an algorithm that can efficiently recover the mean to error ~ $\epsilon \sqrt{\log 1/\epsilon}$
- Key idea: "filtering"
- Can also be extended to arbitrary distributions (not just Gaussian, as long as variance is bounded)