
THEORY OF MACHINE LEARNING

LECTURE 24

ROBUSTNESS 



ANNOUNCEMENTS

 Homework 4 – out soon, due ~ 2 weeks

 Project presentations: starting next week! (~18 projects) 

 Dates: April 19, 22, 26 (5 projects /class), couple online

 This week and next: representation learning, robustness



LAST WEEK

 NNs and “representation learning”

 Intermediate layers of NN

 NN transforms inputs -> “feature space embeddings”

 Supervised vs unsupervised representations (when is a rep “good”)

 Self-supervision

(using supervised learning to do unsupervised learning)

 Representations in NLP

 Embeddings for words (Firth’s hypothesis, n-grams)

 Embeddings for nodes in a graph



LEARNING IN THE PRESENCE OF ADVERSARIES

 Training time versus test time

 Training time: adversary corrupts small fraction of inputs

 Test time: adversary evaluates model on inputs with “imperceptible error” added 

(can be viewed as input distribution vs test)



NOISE IN TRAINING DATA

 “Benign” noise:

 Very common – standard regression analysis, clustering, label noise in supervised learning, … 

(iid mean zero noise)

 Less common – few (random subset) of points are “badly” corrupted (Huber’s contamination 

model)

 Adversarial noise (data poisoning)

 Carefully chosen subset of points is corrupted

 Even basic problems are hard! (robust mean estimation for Gaussian data, robust PCA)

 Lot of work on robust mean estimation (why?)



CLASSIC ALGORITHMS

 Mean estimation in low dimensions – median vs mean 

 “Inlier pursuit”:  key idea is that inliers “reinforce” one another 

 RANSAC algorithm



PROBLEM OF DIMENSIONALITY

 High dimensional mean estimation

 Clean data =  n iid samples from Gaussian in d dimensions (mean 𝜇, covariance matrix Σ)

 Corrupted data = 𝜖𝑛 points from clean data are replaced with some adversarially chosen 

points (in 𝑅𝑑 )

 Can you recover the parameters 𝜇′ and Σ′ so that 𝑁 𝜇, Σ ≈ 𝑁(𝜇′, Σ′) [Can show 

that if you allow exponential time, this can be done to 𝑂(𝜖), if 𝑛 is big enough 

(polynomial in 𝑑)]

 Simpler problem:  assume Σ = 𝐼



ROLE OF DIMENSION

 In 1-D, problem fairly easy

 What about d dimensions?

 Main result [Diakonikolas et al. 2016, Lai et al. 2016]: there exists an algorithm 

that can efficiently recover the mean to error ~ 𝜖 log 1/𝜖

 Key idea: “filtering”

 Can also be extended to arbitrary distributions (not just Gaussian, as long as variance is 

bounded)


