THEORY OF MACHINE LEARNING

LECTURE 23

REPRESENTATION LEARNING

ANNOUNCEMENTS

- Homework 3 due on Monday April 11
- Project presentations: starting in two weeks! (18 projects)
- Dates: April 19, 22, 26 (5 projects /class), couple online
\rightarrow Watch out. for a signup link.
- This week and next: representation learning, robustness
\rightarrow Self-supervision
\rightarrow Word embeddings
\rightarrow Node embeddings for graphs.

LAST CLASS

- Neural Tangent Kernels
- Can one analyze dynamics of gradient descent? [can view as Kernel regression for a time-varying kernel]
- [Jacot et al.] for infinitely wide nets, kernel remains "fixed" - neural tangent kernel; so NN learning == kernel regression with Neural Tangent Kemel.
- NNs as Feature Learning or Representation Learning
- NN transforms inputs -> "feature space embeddings", i.e., new representation
- Why? Representations can have uses beyond classification (egg., image captions, transfer learning, ...)

Solve new task for which we don't have
enough data.

REPRESENTATION LEARNING

- What makes a good representation?
- Contrastive (for classification)
- "Disentangled" or orthogonal
- Sparse "explanations" for phenomena
- Hierarchically organized, explanatory

Leverage domain knowledge

- Supervised vs Unsupervised Supervised
- Pros: contrastive, better accuracy for given task, no special training
- Cons: may not generalize
"Auto-encode" view:
\rightarrow representation should allow you to "approximately recover" input.
\rightarrow Pervading view in unsupenised rep. learning.
\rightarrow Information "bsttherede."
"Calibration"
Unsuperioised.
- Pros: generalizes to many tasks, no careful data collection needed
- Cons: unclear how to learn!

UNSUPERVISED REPRESENTATION LEARNING

- Classic approaches: manual feature engineering, autoencoders and "sparse coding"
inputs: $x_{1}, x_{2}, \ldots, x_{N} \in \mathbb{R}^{d}$.
recovering input is key.
"basis" or "dictionary" in $v_{1} \ldots, v_{m} \in \mathbb{R}_{\text {such th }}$ each $x_{i}=\sum_{i=1}^{m} \alpha_{j}^{(i)} v_{j}$, where $\alpha^{(i)}$ is a
- More modern: self-supervised learning, invariance" and data "sparse" vector augmentation
- Example: NLP tasks

Hishlevel idea:
\rightarrow Can you do unsupenised rep. harming ${ }^{4}$ using supervised beaming?
Idea: This (in) a cat; . can do it for mages.

* An inge and its slightly rotated version have the same resp.

A Neural Probabilistic Language Model (2003)

Yoshua Bengio
Réjean Ducharme
Pascal Vincent
Christian Jauvin
Département d'Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques
Université de Montréal, Montréal, Québec, Canada

BENGIOY@IRO.UMONTREAL.CA
DUCHARME@IRO.UMONTREAL.CA
VINCENTP@IRO.UMONTREAL.CA
JAUVINC@IRO.UMONTREAL.CA

Editors: Jaz Kandola, Thomas Hofmann, Tomaso Poggio and John Shawe-Taylor

Abstract

A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the curse of dimensionality: a word sequence on which the model will be tested is likely to be different from all the word sequences seen during training. Traditional but very successful approaches based on n-grams obtain generalization by concatenating very short overlapping sequences seen in the training set. We propose to fight the curse of dimensionality by learning a distributed representation for words which allows each training sentence to inform the model abouran exponential number of semantically neighboring sentences. The model learns simultaneously (1) a distributed representation for each word along with (2) the probability function for word sequences, expressed in terms of these representations. Generalization is obtained because a sequence of words that has never been seen before gets high probability if it is made of words that are similar (in the sense of having a nearby representation) to words forming an already seen sentence. Training such large models (with millions of parameters) within a reasonable time is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach

REPRESENTATION LEARNING IN NLP
Word 2 rec. [Mäkelor et all]

Latent Semantic Indexing (90s).

- Approaches based on Firth's hypothesis (1950s).
"a word is defined. by the company it keeps". continues n.
Look at block e of text; look at n-grans sequences ofnwords:
Bob ate an apple
w_{1}
w_{2}
ω_{N}
set gall words. if awe want a vector rep. for words,

\rightarrow For every word, we have vechr u_{i} with the prop. that $\alpha_{i j} \approx\left\langle u_{i}, u_{j}\right\rangle$.

REPRESENTATION LEARNING IN GRAPHS

\rightarrow Graph as a matrix is useful.
\rightarrow Common nbs etc. not exactly captured
\rightarrow Graphs produce n-grans by random walks.

