
Lecture #: Gradient Descent Dynamics, Neural

Tangent Kernel

Instructor: Aditya Bhaskara Scribe: Ian Argyle

CS 5966/6966: Theory of Machine Learning

March 31st, 2022

Abstract

In this lecture, we show that gradient descent is equivalent to kernel re-
gression with a time varying ”tangent” kernel. We also discuss why a suf-
ficiently over-parametrized model with random initialization can achieve
zero error.

1 Introduction

To recap, recall that given some data (x1, y1), (x2, y2), ... from some distribution
D, we want to find h that minimizes the risk. This is hard to solve in exactly,
so in practice we use gradient descent.

Our goal is to reason about the dynamics of gradient descent, and the solution
it provides. We can start by asking a question: is gradient descent easier to
analyze when the network is heavily overparametrized?

2 Over-Parametrization

Recall that we define a model as being overparametrized if the number of
parameters in the model is much larger than the size of the training data.

This brings us to the following theorem:

2.1 theorem. A width ≈ N3 network (any number of layers) trained via GD from
random initialization achieves zero training error. Moreover, the final solution is
equivalent to solving a “Kernel regression” problem with a specific kernel.

We will examine this is more depth, but first let’s review what kernel regres-
sion is.

3 Kernel Regression

Recall that in regression problems, we are given the value of a function at a
finite number of points, and we want to try to interpolate the rest of the space.

Kernel regression is based on a similarity metric between two points, this is
called the kernel K(x, y). Using this method, if we want to interpolate the
function value at a specific point x, we can use an equation in the following

1

4. Gradient Descent Analysis

form:

f̂ (x) =
N

∑
i=1

αiK(x, xi)

So, the goal with kernel regression is to find the best α’s given some kernel
(such as Gaussian). Mathematically, we want to solve for α1, α2, ...αN where
f̂ (x) = y.

To achieve this, consider an NxN matrix K where Ki,j is defined as K(xi, xj), if
we put the y’s and α’s into vectors, we get the following:

K(x1, x1) . . . K(x1, xN)
...

. . .
...

K(xN , x1) . . . K(xN , xN)

α1
α2
...

αN

 =

y1
y2
...

yN

Notice that this has a closed form solution: α = K−1y. However, in practice
it’s better to use gradient descent to minimize g(α) = ∥Kα − y∥ (we did this
in the last homework). Specifically, this means initialize α(0), then

α(t+1) = α(t) − 2ηK(Kα − y)

for some learning rate η since ∇g(a) = 2K(Kα − y).

How does this relate to neural networks? First, lets analyze how f̂ changes
over time (as you do steps of gradient descent):

f̂ (α(t+1), x)− f̂ (α(t), x) =
N

∑
i=1

α
(t+1)
i K(x, xi)−

N

∑
i=1

α
(t)
i K(x, xi)

= −η⟨∇ f̂ (α(t), x),∇g(α(t))⟩

= −η⟨∇ f̂ (α(t), x),
N

∑
i=1

(f̂ − y)i∇ f̂ (α(t), xi)⟩

= −η
N

∑
i=1

(f̂ − y)iK(x, xi)

4 Gradient Descent Analysis

Now, let’s analyze how some model f (w, x) changes as we do steps of gradient
descent. That is:

f (w(t+1), x)− f (w(t), x) = f (w(t) − η∇L(w(t)), x)− f (w(t), x)

= f (w(t) − ε, x)− f (w(t), x) setting η∇L(w(t)) = ε

Now, we know that f (w + ε, x)− f (w, x) ≈ ⟨∇ f (w, x), ε⟩ so, we have:

f (w(t) − ε, x)− f (w(t), x) = −η⟨∇ f (w(t), x),∇L(w(t))⟩

2

Notice that ∇wL(w) = ∑N
i=1(f (w, xi) − yi)∇w f (w, xi). Setting f (w(t), xi) =

u(t)
i leaves us with:

f (w(t) − ε, x)− f (w(t), x) = −η⟨∇ f (w(t), x),
N

∑
i=1

(u(t)
i − yi)∇w f (w(t), xi)⟩

= −η
N

∑
i=1

(u(t)
i − yi)⟨∇ f (w(t), x),∇ f (w(t), xi)⟩

Defining ⟨∇ f (w(t), x),∇ f (w(t), xi)⟩ = H(t)(x, xi) leaves us with:

f (w(t+1), x)− f (w(t), x) = −η
N

∑
i=1

(u(t)
i − yi)H(t)(x, xi)

Now, we can see that this is equivalent to kernel regression with a time-
varying ”tangent” kernel (H(t)).

5 Other Findings

While we didn’t show this in class, the authors of the paper mentioned above
(Jacot et al.) also showed that for very wide, randomly initialized neural net-
works, the kernel remains ”nearly fixed” with time.

Also, for a ”large” amount of time, w(t) doesn’t change much. Intuitively this
makes sense, if there are sufficiently many parameters, w doesn’t need to
change very much to achieve zero error. However, in this case, w’s won’t cor-
respond to useful features.

3

	Introduction
	Over-Parametrization
	Kernel Regression
	Gradient Descent Analysis
	Other Findings

