
Lecture #20: Optimization in Neural Nets,
Feature Learning

Instructor: Aditya Bhaskara Scribe: Jiayi Wang

CS 5966/6966: Theory of Machine Learning

March 29th, 2022

Abstract
This is a summary of the day’s lecture. In this lecture, two main top-

ics are discussed, Gradient Descent (GD) algorithm for training neural
networks, and the Feature Learning. For GD, its computation costs and
resulted training loss are discussed. For Feature Learning, what is ‘useful’
feature embedding is discussed.

1 Some Preliminaries

Before we proceed to the main topics in this lecture, we will introduce some
basics. The definition for neural network is as the following. Definition A
layered ‘circuit’ that takes a vector of input feature x, produces y = Fr ⊙ Fr−1 ◦
. . . ◦ F1(x), where Fi is a function of the form Fi(z) = σ(Az + b), for some
activation function σ(), which acts coordinate-wise.

Common activation functions include Threshold function, Sigmoid function,
ReLU and Tanh etc. To train a neural network is to find the parameters with
given architectures which can minimize the empirical loss of the given dataset.
However, learning weights is a NP-hard problem.

Theorem Given an architecture, it is NP-hard to learn weights, even if classi-
fication error is 0 and we just have 3 internal nodes.

But considering the worse case, where the input data points are bad to train, is
not reflective of practice. However, if the width is large, with random inputs,
we can train the neural network efficiently. One common algorithm used for
training is the Gradient Descent, since gradients are easy to compute.

2 Is Gradient Descent (GD) Good?

Gradient descent is a common method to find the weights for neural network.
Naive GD takes computation time proportional to N|w| per iteration, where N
is the number of data points and |w| is the number of weights. This could be a
huge cost since N and |w| could be very large, i.e. thousands of. Therefore, in
practice, we often use stochastic gradient descent (SGD) to save time. In SGD,
we divide N data points into several batches and we only compute gradients
on one batch in one iteration.

Another question is given the whole dataset, can GD result in training error
as ϵ∗ + f (N) after N iterations? Here, ϵ∗ is the optimal training loss. For con-
vex functions, GD do result in this results with f (N) = 1√

N
. Bur for neural

1

3. Feature Learning

networks, which are highly non-IID, the answer is no. Then if the network
architecture allows for zero error, does GD converge to zero error? The an-
swer is no since this is an NP-hard problem. There is an alternative to GD,
method of moments, which is used for shallow networks. It has been shown
that this method can converge in exponential time with respect to the number
of nodes, depth. And it can learn what GD can’t.

However, in the over-parameterized case, where the width of the net is larger
than the number of input, GD can result in a good training result. This can be
shown in the following theorem.

Theorem [Jacot, Gabriel, Hongler 2018][Arora, et al. 2019] A width propor-
tional to n3 network with any number of layers trained via GD from random
initialization achieves zeros training error.

The key idea behind this theorem is that since the width is so large, param-
eters do not change much during the training. GD-based training in neural
networks could be equivalent to kernel methods (Neural Tangent Kernel) at
least with infinite width.

3 Feature Learning

Figure 1: A neural network figure from https://www.pnas.org/doi/10.

1073/pnas.1821594116.

We show a figure for a neural network for face identification in Figure 1. We
can see that for neurons near to the input layer, they can identify some basic
features such as the light/dark pixel value, edges. But neurons near the output

2

https://www.pnas.org/doi/10.1073/pnas.1821594116
https://www.pnas.org/doi/10.1073/pnas.1821594116

can identify some complicated facial features. The features in the output layer
are used to output the final classification result. Therefore, we can regard this
neural network as performing a linear classification with the final features. It
can be seen that what the neural network is doing is ‘embedding’ the input to
the feature space.

Then a question would be, given some input, can we extract some useful
features? This is what feature learning does. There are some examples for
extracting features. Contrastive learning extract features by comparing which
data points are similar, which are different. Or we can discriminate different
data points in terms of predicting their classes and classes are ‘orthogonal’.
There is also a method called Manifold learning. The basic idea is that to
describe the dataset with some low-dimensional manifold. And every point
on the manifold is defined by k << N parameters.

Then how should we find the feature embedding and what do we expect? The
feature embedding can be formalized as the following

x → f (x)

where x is the raw data and f (x) is the feature embedding. After discussions,
we can summarize our expectations for feature embedding as followings.

• f (x) should be useful to distinguish between classes.

• Coordinates of f (x) should be ‘independent’ to one another.

• f (x) should be as ‘informative’ about x as possible.

By ‘independent’, we mean features are nearly ‘orthogonal’ to each other. By
‘informative’, we mean the we recover the exact data by its feature embedding.

3

	Some Preliminaries
	Is Gradient Descent (GD) Good?
	Feature Learning

