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Abstract

In today’s lecture we went through the basics of Neural Networks and
Deep Learning. We also covered the depth-width trade-off and finally
showing the power of depth.

1 Introduction

Neural Networks are a complicated hypothesis class that takes an input x and
produces an output y. The main goal is to solve the ERM problem for this
hypothesis class.

Given data (x1, y1), (x2, y2), ... for a distribution D. Find the hypothesis class h
that minimizes the risk. Where xi is a feature vector ∈ Rn and yi is the label
∈ R.

For binary classification:

(1) risk(h) = Ex∼D1[h(x) ̸= y]

For real values:

(2) risk(h) = E(x,y)∼Dl(h(x), y)

Here l is the loss function.

This ERM is called training using the given data. Finding best hypothesis
( f (xi) = yi) for all i.

2 Theory of Deep Learning

Expressibility:

Expressibility is more of a structural questions.

Few examples are
How rich is the hypothesis class?
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4. Depth vs Width

What kind of functions can be obtained using a DNN?

Training complexity and dynamics:

After solving an ERM problem using neural networks we need to check how
good is the network on unseen test data.

Generalization:

What kind of generalization bounds can we prove ?
Example is VC dimension, number of parameters.

Answers for the questions are easy but are extremely incomplete in a real-
istic settings.

3 Expressibility Basics

Barron’s Theorem

3.1 definition. Any continuous function f that satisfies an appropriate ”nice-
ness” condition that is parameterized by C can be approximated to an error ϵ
by a 2-layer NN with C2/2 internal nodes.

Nice functions can be approximated by small NN’s.

Universal Approximation

3.2 definition. Any continuous function over a compact domain can be ap-
proximated by a 2-layer NN with any non-linearity.

Let’s say we have the input dimension n the width of the neural network
needed is 2n. It is exponential. Hence, In practice 2 layer NN’s are not used.

4 Depth vs Width

Depth allows the neural networks to learn meaningful features whereas width
allows the neural networks to memorize the features.

In Practice deeper networks are used more frequently compared to wider
networks. Width of a network comes into play in case we have a bunch of
classes that are unrelated to each other. Different neurons will be connected
to different parts to memorize the input.
Universality results degrade rapidly with dimensions. For example, the curse
of dimensionality (width needs to be in exponential dimensions).
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Example of Depth Width tradeoff

Let,

F1 : {f : f is the output of depth 3 NN with width ≤ 100}

F2 : {f : f is the output of depth 2 NN with width ≤ 108}

The input size of the neural networks is 1.

The question is can the function in F1 be approximated to an error ≤ ϵ us-
ing a function in F2?

There is a field in complexity theory that is circuit lower bound.

Circuit Lower Bounds:

Look at specific f of interest and ask if there exists a circuit of size ≤ S that
computes f.

[Minsky and Pappert ’69] showed that the parity function requires exponen-
tial width to do a Neural Network. A parity function outputs 0 if there are
even number of 1’s and outputs 1 if there are are odd number of 1’s in the
given binary string. This was one of the reasons to loose interest in Neural
Networks.

5 Power of Depth

Template of Theorem: There exists a network of depth D and size S that com-
putes some function f that cannot be approximated by the output of any net-
work with depth d and sizes S’. Typically d << D and S’ >> S.

Minsky showed hat if we have networks with ReLU activation then for any
integer k there exists some network with D = k3 a constant width. If we want
to approximate it with a network with depth k then the width of the network
would be exponential in k (i.e) exp(k).

Proof Outline:

The proof goes by considering one-dimensional inputs and ReLU activations.
Proof is also divided into three parts.

Insights: depth D lets us achieve exp(D) oscillations in f. For width w and
depth d #oscillations ≤ wo(d) . In order to achieve so many oscillations with d
requires a huge width.

If we want D = k3 and d = k.

To match the number of oscillations:
2k3

= wk
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5. Power of Depth

w > 2k2

Part-1:

Let’s take a single variable input x in domain [0,1]
let σ be a ReLU operator σ(x) = max(0, x)

For the function below f(x) = σ(2x)− σ(4(x − 1/2)) + σ(2(x − 1)).

f(f(x)) looks like below and has 2 peaks.
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f(f(f(x))) has 4 peaks and so on.

f o(k+1)(x) has 2k peaks that means using a depth 2k NN with width ≤ 3

we can implement this function.

Part-2:

If we use depth << k getting this function requires a huge width.

Observation:

Let yi be a neuron that is a piecewise linear function of variable x with ≤ ni
pieces.

Idea:

If we have a layer with neurons y1, y2, y3, ...yw and the output layer is f such
that f = y1 + y2 + y3 + ... + yw
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5. Power of Depth

We can say that f is also piecewise linear and the number of pieces in f is
pretty small ≤ (n1 + n2 + ... + nw)2.

Part-3:

Let’s say f1 and f2 are piecewise linear function with m1 and m2 pieces and
m1 ≤ m2/2.

Then, || f1 − f2|| ≥ 1/8. This shows that f1 cannot be approximated to f2.
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