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Abstract

In this lecture, we explore various aspects of neural network optimiza-
tion. Specifically, we touch on gradient descent, overparameterization, and
feature learning.

1 Neural Networks (DNN)

1.1 definition. A layered “circuit” that takes a vector of input features x,
produces output y = Fr ◦ Fr−1 ◦ ... ◦ F1(x), where each Fi is a function of the
form Fi(z) = σ(Az+ b), for some activation function σ() (that acts coordinate-
wise).

Figure 1: Example Neural Network

Here are some examples of commonly used activation functions:

• Threshold

• Sigmoid (continuous approximation): 1
1+e−x

• ReLU and Tanh

2 Learning Neural Networks

In previous lectures, we mentioned that neural networks can represent and
approximate any function by the universal approximation theorem. Conse- See (Barron, Cybenko) for more informa-

tion on the universal approximation theo-
remquently, we can formulate the supervised learning problem as follows: given

data (x1, y1) , (x2, y2) , ..., (xm, ym), where xi ∈ Rn and yi denotes the label,
from some distribution D, find h (with given “architecture”) that minimizes
the risk. In the context of neural network learning, the Empirical Risk Mini-
mization (ERM) problem is usually referred to as neural network training.
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3. Is Gradient Descent Good?

Choosing the network architecture is difficult and depends on the type of
problem (inductive bias). Typically, we rely on heuristics for choosing our
architecture, e.g., convolutional neural networks (CNN) for image data and
transformers for natural language processing. However, even with these loose
guidelines, many other architecture decisions must be made (depth vs. width
trade offs). As a result, there is no “good” general purpose technique for
selecting the architecture.

2.1 theorem. Given an architecture, it is NP-hard to learn weights, even if classifi-
cation error is 0 and we just have 3 internal nodes.

See the textbook for more details on Theo-
rem 2.1 In essence, Theorem 2.1 states that even if we are given an architecture, find-

ing the optimal weights is NP-hard. However, clearly this is not reflected in
practice and is a worst case result. Naturally the question becomes, can we
obtain more ”positive” theoretical results (not just worst case)?

It turns out that this problem is fairly difficult and is still an open problem.
However, if the width is large, it has been shown that you can train efficiently,
assuming a depth of 2 and random inputs (see Theorem 2.2).

2.2 theorem. Given (x1, y1), (x2, y2), ..., (xm, ym) where xi ∈ Rn and y ∈ {0, 1},
decide if there exists a network of the structure in Figure 2 such that h(xi) = yi ∀i

Figure 2: Shallow Network

However, theorem 2.2 suffers from the fact that it relies on ”worst“ case inputs
(i.e., corrupted), while also constraining the network size to be “too small”.
Follow up works have tried to remedy these weaknesses by exploring sce-
narios where inputs are drawn from N (0, 1)n. For example, consider an un-
known/hidden network where its input x ∼ N (0, 1)n. Then, by examining,
the input and output behaviors of the unknown network (“correlations” be-
tween y and x), we may be able to uncover the architecture of the hidden
network (i.e., find the network that generates y from x). On the other hand,
other works have explored relaxing the problem to allow slightly larger archi-
tectures.

In practice, the gradient descent (GD) algorithm is used to train neural net-
works, since computing gradients is not too difficult and is simply an appli-
cation of the chain rule. Specifically, this algorithm is known as ”Back propa-
gation” and runs in linear time.See (Rumelhart, Hinton, Williams) for

more information.

3 Is Gradient Descent Good?

In terms of runtime, naive GD takes time roughly N × |w| per iteration, where
|w| is the number of weights, which isn’t very good. This can be seen from the
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fact that our loss for a single interation is given by

L(x, w) =
N

∑
i=1

l(xi, w)

for data (x1, y1), ..., (xn, yn). As a result, in practice, a form of stochastic GD is
utilized. We divide N into “batches” and compute the gradient only using a
batch, which greatly reduces the runtime per iteration.

In terms of optimality, given that we can run GD, there are two questions we
need to answer. First, given data (x1, y1), (x2, y2), ..., does running GD for N
iterations result in training error ≤ OPT + f (N) for some decreasing function?
In this case, the answer is no because this function is not convex. Second,
assuming the network architecture allows for zero error, does GD converge to
zero error? The answer is no (see NP-hardness result in Theorem 2.1).

Consequently, much work was put into researching alternative moments-based
variants of GD; however, these techniques tend to only work well for shallow
networks. In practice, we still do not have a good alternative to gradient de-
scent yet. See (Anankermas et al.) for more informa-

tion on shallow network analysis. (Chen,
Klivans, Meka 2020) show that in time
exp(# internal nodes, depth, other parame-
ters) moment-based variant can learn what
GD can’t (fixed parameter tractability).4 Overparameterization

Given that when trying to derive bounds for GD on non-convex functions,
things fail badly, many people turned to the following question: can we show
that GD is good in any reasonable generality?

In some cases, people have been able to show that for over parameterized
networks (width of network ≥ some # inputs), then all local optimiums are
close to global optimums (see Theorem 4.1).

4.1 theorem. A width of ∼ n3 network with any number of layers trained via GD
from random initialization achieves zero training error with high probability.

See (Jacot, Gabriel, Hongler 18) and
(Arora, et al. 2019) for more information
on Theorem 4.1The key idea is that the parameters do not change much during training if the

width is very large. Intuitively, when the width of network is so large, then
every data point can be memorized. Nonetheless, the main takeaway is that
this is possible with GD, even though it appears to be just memorization. This relates to the idea of neural tangent

kernels. Informally, the idea of neural tan-
gent kernels is as follows: GD-based train-
ing works like a kernel method with an ap-
propriately defined kernel (at least with in-
finite width).5 Feature Learning

When we started with neural networks, we wanted to start with some input
x, derive some basic features from x, derive some complex features from our
basic features, then finally derive some classification features for our task of
classification (see Figure. 3).

In essence, our neural network is performing linear classification in ”feature
space.“ We can view our neural network as embedding x in some feature
space, which leads to the problem of feature learning.

Our feature learning problem is as follows, given some inputs, can we “ex-
tract useful features”? The answer is yes. Some examples of feature extraction
techniques are as follows:

• Contrastive learning
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5. Feature Learning

Figure 3: General Neural Network Feature Extraction Flow

• Discriminative learning (predicting classes that are orthogonal to each
other)

• Manifold learning (every point defined by k << N) parameters

• Spare coding (autoencoding)

Based on the embedding view of neural networks, the goal is to find a feature
embedding mapping of data points x → f (x), where x is our raw data and
f (x) is our feature embedding, that satisfies certain properties. Our embed-
dings should have the following properties:

1. f (x) should be useful to discern between classes

2. Coordinates of f (x) should be ”independent“ of one another

3. f (x) should be “as informative” about x as possible

As a result, knowing f (x) we should be able to “recover” x to a certain extent.
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