
Lecture 19: Neural networks: Representation,
Optimization

Instructor: Aditya Bhaskara Scribe: Manoj Marneni

CS 5966/6966: Theory of Machine Learning

April 3rd, 2022

Abstract

This lectures recaps Deep Neural Network functions and discusses
how do you train Neural Networks using gradient descent algorithm. Also
It is shown how complex calculating weights using gradient descent can
get even for 2 layered networks, which was solved using Back propagation
algorithm.

1 Artificical/Deep Neural Network Recap

Neural Networks are a class of functions that is inspired by how our brain
perceive things. In the initial layer we’ll have input and then this input feeds
into detectors of basic features and more complex features are built on top of
it.

Definition: A layered “circuit” that takes a vector of input features x, produces
output y = Fr ◦ Fr−1 ◦ ◦ F1(x)◦, where each Fi is a function of the form Fi(z)
= σ(Az + b), for some activation function σ().

Some common activation functions are Threshold, ReLU, Tanh, Sigmoid, etc

2 Theory of Deep Learning - Recap

Most of the theory of deep learning can be divided into three kinds of studies.
The three broad directions are

1. Expressibility: What kind of functions can be obtained using a Deep
Neural Network (DNN). This is used to define the complexity of the
functions and There is no focus on training in this.

2. Training Complexity Training dynamics for Gradient Descent (GD)
and variants: The studies in this part is focused on how do you train
GD type of algorithms and how do you analyse them. What of kind
solutions does it converge to? In general, this involves studying, Can
the Empirical Risk Minimization (ERM) for Neural Networks be solved
efficiently? and what guarantees are possible?

3. Generalization: This branch is mainly focused on what kind of gener-
alisation bounds can we prove? VC-Dimension is one way to capture
generalisation. The question here is, if you get m training examples, can
you ensure that the test error, assuming same distribution, is less than
f (m)?, usually f (m) will be 1√

m .

1

3. Why Deep Networks? - Recap

A general thing to keep in mind is that you can have easy answers for all these
questions but they are unsatisfactory for realistic settings.

In Expressibility basics, we saw Barron’s theorem and Cybenco’s Universality
expression. If we have d dimensional function, Inorder to represent it using
a neural network we need exponential in d width. This true for classical uni-
versal approximation result. But it is not needed for barron’s theorem, the
niceness condition allows it to not depend on dimensionality. Therefore the
curse of dimensionality is only applicable for Cybenco’s universality approx-
imation.

3 Why Deep Networks? - Recap

Even very shallow networks like depth 2 networks are universal i.e, they can
express any function given large enough width. But we don’t use it because,
if we don’t use depth then the result requires extremely large width and we
don’t have very good generalisation properties either. That is why we need
deep networks.

In previous lecture, we formalised this general practical intuition, that depth
allows for more intuitive, more high level feature, while width is useful for
brute force memorisation. Some additional motivation for depth is, if you
want to work with high dimensional data then shallow networks are not very
useful because if you will need extremely high width.

Power of Depth: In the previous lecture we saw a theorem, which states that
there exists a network of depth k2 and O(1) width, that computes function f ,
with the property that any network of depth k that approximates function f
requires width of >≈ 2k. The proof of this relied on three basic observations,
such as

1. A function with 2k2
oscillations can be output by a depth k2 network

with 3 neurons per layer.

2. Any function that is the output of width w, depth k ReLU network is
composed of atmost (2w)k piecewise linear ”pieces”.

3. A picewise linear function with fewer than 2
k2
2 pieces cannot even ap-

proximate the function from (1) to an error of ≈ 1
4 .

This theorem restricted in applicability, this is not known to be true even for
sigmoid or sinewave. It is only known to be true for piecewise polynomial
functions. You can expect this to be true for other classes of functions as well.

Moral:

1. Depth allows to capture complex, highly oscillating patterns.

2. Width typically allow you to capture different behaviour in different
regions of space.

Finding the right network for an application is a difficult problem to solve,
and there is no general solution to that. Some attempts were made to solve this
problem like network architecture search but they are applicable to very spe-
cific domains. There are areas like physics informed machine learning where
you need different types of network architectures than what you would have

2

normally. People used Hebbian principle as a guiding principe to develop
neural networks for a while, where you don’t start with an architecture, but
you build an architecture based on activations of the previous layer. You can
show that this sort of thing works under some assumptions, but it works
pretty sub-optimal compared to known networks.

4 Neural Network Training

Supervised Learning of NN: Given data (x1, y1), (x2, y2).....(xn, yn) where x
is the input and y is the label, from some distribution D, find a hypothesis h
that minimizes the risk (empirical risk is what we care about).

We need a loss function to find such hypothesis, we can use standard met-
rics like sqaured loss, cross entropy, etc. Let hw(x) is the output of neural
network, where w are the weights of NN. We need to find w, so as to min-
imise ∑n

i=1(hw(xi)− yi)
2. Even for this squared loss, ERM problem is NP-Hard

because h is non-linear. Though it is NP-Hard it does not rule out the useful-
ness of NN. ERM assumes that you are given some data and you need to find
the best possible solution, this problem is hard, but in practice, we can get
more data if required. Therefore we need to consider NP-Hardness results of
the problems in this space, with a pinch of salt.

5 Common Algorithm - Gradient Descent

We solved ERM problems with data (x1, y1), (x2, y2).....(xn, yn) and a hypoth-
esis class h(w, x) defined by ”weight vector” w and input x.
In linear hypothesis, h(w, x) =< x, w > +c
Let’s say we have a 2 layered neural network, with F1(x) = σ(Ax + b) and
the output y = σ(vT F1(x) + b′). The Weight vector now consists of, w =
(A, v, b, b′). In general weights are set of all tuple of matrices, biases, etc. All
the parameters that are involved in defining the model, these are often also
called model parameters.

Now the goal of ERM is to find w, so that the sum of associated losses over
training data is minimum (i.e find w such that ∑n

i=1 l(h(wi, xi), yi), say G(W)is
minimum). This G(w) is no longer a convex function.

1. If G were convex, Gradient Descent (GD) probably works.

2. In Neural Networks, G is usually not convex i.e, for most choices of ac-
tivation functions. Minimisng for non-convex function is general a Hard
problem, but you can hope that GD still works.

3. GD still finds local optimal. Hope is that if you have sufficient data,
GD finds a ”good” local optima. In most of modern NN, we try to use
same tricks that are developed in the context of convex optimisation, like
momentum, regularisation, etc.

5.1 Landscape analysis of local optima:

Quality of local optima: This refers to the difference between local optimum
and global optimum. There is also a lot of work on finding the Number of
local optima, it can be very large, but there is not much work on trying to

3

5. Common Algorithm - Gradient Descent

understand this quantity. Lot of people have tried to show you can have a
lots of local optima and most of those local optima are reasonably good. Lots
of Global optima (or nearly global optima): Some Global optima generalises
way better than others. Initially, people used to focus more on the first two
metrics, but recently people realised that even though a local optima is close
to the global optima, some global optima are way better than others. There is
a general belief that the process of gradient descent itself acts as some kind
of regulariser. The solution you find by using Gradient Descent is better than
other solutions that has zero loss but they don’t generalise well.

5.2 How to do Gradient Descent:

We start with w(0), then

w(t+1) = w(t) − η▽G(w(t))

Even for 2 layered neural network, the gradient descent algorithm can get
messy. we have G = ∑n

i=1(h(wi, xi) − yi)
2. For simplicity let us say G =

(h(wi, xi)− yi)
2.

▽G = 2 ∗ (h(w, x)− y) ∗▽h(w, x)

▽h(w, x) captures how does h change with change in w. In 2-layered neural
network we have

h(w, x) = σ(vT(σ(Ax + b)) + b′)

This implies ▽h has components along each entry of A, b, b′, v. If σ is ReLU ∂h
∂vi

will be essentially yi. Similarly you can differentiate with respect to Aij using
chain rule as follows,

∂h
∂Aij

= σ′(vT(...)) ∗
∂yj

∂Aij
∗ vj

If you have more than 2 -layers you’ll start getting into quadratic computation,
high complexity very easily. If you want to see the effect of a weight in layer
1 on the overall function, you can see it impacting all the layers, and its cal-
culation getting very messy. The influence of the weight in layer 1, can be felt
throughout the network. Now, if you want to calculate the derivative of h w.r.t
weight in layer 1, it will become a messy problem involving all paths. There
is a clean way of solving this problem using dynamic programming known
as Back propagation algorithm. It introduces new variable that keeps track of
gradient with respect to weights in each layer. These are not parameters of
the network but some kind of accumulated totals. Using which you can find
gradients very efficiently in linear time of the number of parameters.

4

	Artificical/Deep Neural Network Recap
	Theory of Deep Learning - Recap
	Why Deep Networks? - Recap
	Neural Network Training
	Common Algorithm - Gradient Descent
	Landscape analysis of local optima:
	How to do Gradient Descent:

