
Lecture #: Topic

Instructor: Aditya Bhaskara Scribe: Ian Mogensen

CS 5966/6966: Theory of Machine Learning

March 1st, 2022

Abstract

In this lecture we primarily discuss the concept of Preconditioning,
and touch on Paralellism as it relates to Gradient Descent and Stability as
a result of strongly convex functions.

1 Parallelism

Computing gradients can usually be parallelized, with parallelism taking place
with computing the derivatives for each i (each row). This is generally what
is referred to when people mention parallelism in Deep Learning, because
epochs must run in series, and as such parallelism across time is infeasible
without prior knowledge of where gradient descent will end up after a cer-
tain number of steps.

It is for this reason that there is a large focus on making the dependence on
T very good (as in convergence with error O(1√

T
) after T steps, seen in the

previous class) - the lack of an ability to parallelize across time leaves one with
little choice but to minimize the number of steps needed.

Second-order methods, seen later on, are methods sometimes preferred to
what we have seen thus far, because they result in a much smaller number of
iterations necessary. However, this smaller number of steps can come at the
cost of heavier, more complicated computation.

2 Preconditioning

Broadly speaking, preconditioning in gradient descent is used to adjust for
different curvature in different directions. To gain intuition, we consider the
following example

f (x1, x2, x3) = x2
1 +

x2
2

4
+

x2
3

9

which yields the gradient

∇ f =


2x1

2x2
4

2x3
9


1

2. Preconditioning

and can be verified to have a Lipschitz constant of 2. From previous classes,
we know that the step-size of gradient descent is η = 1

2M for an M-smooth
function, hence we have a step size < 1

4 .

It follows that with x(0) = (1, 1, 1),

∇ f (x(0)) =

 2
1/2
2/9


Moving to the next iteration yields

x(1) = x(0) − 1
4
· ∇ f (x(0)) =

 1/2
7/8

17/18


We can see that while the first element of the vector makes decent progress
towards approaching 0, the other two elements remain close to 1. It is clear that
the other elements would progress very slowly because the Lipschitz constant
used to determine the step-size is calculated based off the first gradient, which
in this case is an upper-bound across all gradients. In other words, there is a
Lipschitz constant that is much better specifically in the directions of x2 and
x3.

A Hessian matrix is key to this idea of moving differently along different
directions. A Hessian matrix is a matrix of second-order partial derivatives
denoted as:

H = ∇2 f =


∂2 f

∂x1∂x1
· · · ∂2 f

∂x1∂xn
...

. . .
...

∂2 f
∂xn∂x1

· · · ∂2 f
∂xn∂xn


Much like assuming the function for regular gradient descent to behave lin-
early, for determining how much to move along different directions, we as-
sume the function to behave quadratically. This quadratic approximation would
be

(1) f (x + δ) = f (x) + ⟨δ,∇ f (x)⟩+ 1
2

δT(H(x)) · δ

where H(x) = ∇2 f (x) is the Hessian matrix.Note the similarity between this equa-
tion (1), and the one-dimensional quadratic
f (x) + δ f ′(x) + δ/2! f ′′(x) To minimize the quadratic, we have

(2) δ = −(∇2 f (x))−1∇ f (x)

The minimization in equation (2)
also shows resemblance to that
of a one-dimensional quadratic:
δ = − f ′(x)/ f ′′(x)

There are many methods that improve or are generalizations on this notion of
preconditioning. AdaGrad, for example, can be thought of as approximating
second-order methods with only first-order information.

2

3 Stability

Along with faster optimization, strong convexity also adds stability, which
means that given some strongly convex function f (x), it holds that with

g(x) = f (x) + δ(x)

arg minx f (x) is close to arg minx g(x) for some ”small” δ.

Intuitively, one can think of this as a lack of sudden fluctuations (just as the
term ”stability” implies). If there was sporadicness in the function, then the
small movement δ(x) from f (x) could result in a function value g(x) very
different from f (x).

Note that a loss function that is more stable also generalizes well.

3

	Parallelism
	Preconditioning
	Stability

