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Abstract

This lecture quickly summarize Optimization, Improvements, Gener-
alizations and dive into the general idea and notations of neural networks.
It discuss expressibility from theory of deep learning(supervised).

1  QUICK RECAP AND SUMMARY

We explored convex optimization, and various settings which guarantees con-
vergence. For smooth functions we can do something more complex than reg-
ular gradient descent like Polyak’s heavy ball method, second order methods.
The main idea is to make faster progress in gradient decent and attempt to
slip out of saddle points. If you are not making much progress via gradient
decent just make a random jump to neighborhood.

2 NEURAL NETWORKS

The earliest neural net was perceptron(1950s) it was based on biological neu-
ron.
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For some feature or inputs x1, X2, x3...x,, perceptron takes these input and
compute a1x1,a2X2,a3X3...,Xy, Where ay,ay,..a, as weight of the connection
or the strength of the connection. This is feed to a threshold function (),
where F(z) = 0(Az + b) it fires or produce result when a threshold is cross.
We can also visualize it as a logic circuit (not Boolean).

In general complex concepts can be expressed with the help of simple combi-
nation of basis concepts. For example edge detector or finding different edges
can be termed as a basic concept which can be used to build up a alphabet or
shape detector by detecting multiple edges.

The neural net consist of input layer, output layer as well as hidden layers. The
input layer receives the input form outside. The input is then passed through

Distributed optimization, Asynchronous
parallel gradient decent, online optimiza-
tion(closely related to stability, regulariza-
tion) are very close to what we discuss and
these can be the direction for further read-
ing and projects.



2. NEURAL NETWORKS
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one or more hidden layers, which transform the input into data that is fed to
output layer. Finally, the output layer provides an output.

Neural networks possess different layers which consist of neurons, neurons is
two adjacent layers are connected with a certain weight w. For each neuron
the input is multiplied by the strength of the connection. Neural networks take
a input vector R;, feed them through the sequence of these layers and then
generate an output. The output of a particular layer can be of any dimension
and is independent of the input dimension d.

For a neuron with input vector x = [x1,xp,....x,], weight w = [ay, 4y, ....a,]
with function F produces the output F(aix] + apxp.....a,%,). This output is
feed forward to the next neuron. For the output y which is produced after r
layers will be y = F,(F,—1(F,—3....F1(x))).

The activation function calculates a weighted total and then adds bias to it
to determine whether a neuron should be activated or not. The activation
function’s goal is to introduce non-linearity into a neuron’s output. Some of
the common activation functions are :

e Threshold

e Sigmoid
e ReLU
¢ Tanh
Activation Functions
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Figure 1: Various Activation Function(Source : Internet)

Neural networks are basically a (fairly complex) hypothesis class — takes input
x, produces y. For given data (x1,y1), (x2,¥2)... from some distribution D, find



h in this class that minimizes the risk such that h(x;) =~ y;, Vi. ERM problem
usually called neural network “training” — given data, find best fit classifier.
Non-convex optimization problem (due to non-linearity), NP-hard even in
very simple cases but a loss function can be approximated such as square
loss.

3 THEORY OF DEEP LEARNING (SUPERVISED)

We can classify all the research in this area into three categories - Expressibil-
ity, Training complexity and training dynamics for GD and variants Complex-
ity of associated ERM problem and Generalization.

Expressibility - The main motivation is that if we define a particular hypoth-
esis class, what is special about this class and why not some other hypothesis
class. This allow to show that all function can be approximated via neural
nets with any non-linearity. There are two theorems related to expressibility
Barron'’s theorem and Cybenkos’s theorem.

3.1 THEOREM. According to Barron’s Theorem if you have a square integrable contin-
uous function f : Ry — R, and it has a niceness parameter C, then for any € > 0,3
a 2 layer neural network with C? /€ internal nodes such that -

[ |f — h|?dx < € :(where h is the output)

In other words, any continuous function f that satisfies an appropriate “niceness” con-
dition (parametrized by C) can be approximated to error € by a 2-layer NN with C? /e
internal nodes.

3.2 THEOREM. According to Cybenko’s Theorem any continuous function f can be
approximated(even pointwise) by a NN with 2 layers with width depending exponen-
tially on dimension and € parameters. This make fewer assumptions as compared to
barron’s.

Let say you have one dimensional function in a finite domain D. It has been divided
into non-intersecting intervals Iy, I...I,, so domain will be [y U I..... U I,.

graph
f(x) = Cjinf(xi)1(x € Ij)

Further 1(x € I;)(1 is the indicator) can be expressed in terms of o, depending upon
o.
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For example when o is threshold, for two functions one which gets triggered at a point
a and other at point a + J it can be expressed as -

oc(x—a)—c(x—a—0)=1(x € (a,a+9))
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