
Lecture 17: Neural Networks

Instructor: Aditya Bhaskara Scribe: Rahul Thomas Benny

CS 5966/6966: Theory of Machine Learning

March 23rd, 2022

Abstract

This lecture deals with the history, fundamentals and concepts of neu-
ral networks and their significance in modelling a large family of functions
and capturing a large variety of features within data.

1 Introduction

Earliest form of the neural networks was the perceptron which came about
in the 1950s. A perceptron models a single biological neuron by taking in a
weighted combination of inputs and firing when this combination is greater
than a certain threshold. For example, considering that the perceptron has
inputs xi, x2...xn, the weighted combination of these inputs would be a1x1 +
a2x2 + ...anxn. The output of the perceptron would be represented as σ(a1x1 +
a2x2 + ...anxn) where σ() is a threshold function. It can be seen that a percep-
tron generalizes the linear threshold class of functions. This can also be seen
as a logic circuit due to it’s binary nature. Perceptrons cannot themselves be
used to express a large class of functions. Due to this reason, combinations of
these perceptrons were explored since each of the perceptrons’ outputs could
be seen as detecting a basic feature in the data. So, a combination of percep-
trons was expected to show better ability in capturing multiple features which
led to the large neural networks we know today.

2 Artificial/Deep Neural Network

A deep neural network can be defined as a layered ’circuit’ that takes a vector
of input features x, produces output y = Fr ◦ Fr−1 ◦ · · · ◦ F1(x), where each
Fi is a function of the form Fi(z) = σ(Az + b), for some activation function
σ()(that acts coordinate-wise). As seen in Fig.1, each of the perceptrons in this
network, fire based on whether the weighted combination of inputs to them
is larger than the threshold or not. The outputs of the perceptrons in one layer
become the inputs for the perceptrons in the next layer and so on. As shown in
the image, if the first layer has n1 perceptrons, F1 produces a vector of size n1
as output of the form σ(Ax + b) where A is a matrix representing the weights
and b is the bias vector. This then becomes the input for the next layer and so
on leading to the notation Fr ◦ Fr−1 ◦ · · · ◦ F1(x). Note here that σ() is generally
considered to be the zero-centered threshold function but it doesn’t have to
be. Some of the other popular activation functions are:

1. Sigmoid

1

3. Basic Goal of Neural Networks

2. ReLU

3. Tanh

These non-linear functions are used to introduce non-linearities and increase
the expressability of the neural networks thereby not limiting it to expressing
linear functions only.

Figure 1: Diagram of the layers of a neural network

3 Basic Goal of Neural Networks

Neural networks are basically a fairly complex hypothesis class since it takes
an input x and produces an output y. For eg: Class of all neural networks
with r layers and n1 neurons in the first layer, n2 neurons in the second layer
and so on. Supervised learning can be performed with this hypothesis class.
The basic ERM problem is to find the best fit classifier in this hypothesis class
given the data. This process can also be called neural network training in this
context. This is a non-linear non convex problem that is done using a loss
function such as square loss since the ERM problem itself is NP-hard.

3.1 Expressibility

All functions can be approximated via neural networks with basically any
non-linear function σ. This means this class of functions is very expressible.
This is why they are called universal approximators.
Barron’s Theorem:

3.1 definition. If you have a square integrable continuous function f , f :
Rd −→ R, and it has a ’niceness parameter’ C, then for any ϵ > 0, there exists
a neural net(2 layers) with ≈ C2

ϵ parameters such that
∫
| f − h|2dx ≤ ϵ where

h is the output of the neural network. This is true when activation functions
are sigmoid or threshold.

Cybenko’s Theorem:

3.2 definition. Any continuous function can be approximated(even point-
wise) by a neural net with 2 layers with width depending exponentially on
dimension, ϵ parameters. This holds for any non-linear activation function.

2

3.2. Training Complexity and Training Dynamics for Gradient Descent

and variants

3.2 Training Complexity and Training Dynamics for Gradient Descent and
variants

This is a highly researched area related to neural networks. This has to do
with the complexity of training neural networks. While the basic ERM prob-
lem itself is NP-hard, using a loss function to train these networks produces
impressive results. Multiple other methods than Gradient Descent has been
tested to study the training dynamics but mostly gradient descent seems to
continue to out perform them and is still one of the best neural network train-
ing algorithms.

3.3 Generalization

Generalization is the most desired property just like it is for most machine
learning tasks. We know that VC-dimension ≈ number of parameters which
is true for neural nets also. This helps us create a generalization bound if the
ERM problem is solved well but this is a catch since we do not know how well
we can solve ERM. These bounds are then fairly weak. Number of samples
required to get generalization error of ϵ = Dlog(D/ϵ)/ϵ2 where D is the
VD-dimension. This means that the dataset size should be considerably larger
than the VC-dimension. In practice this is rarely realizable since the number
of parameters in most neural networks are almost same or more than the
number of samples. So, there is a requirement for a stronger bound than the
one given by the VC-dimension. This is one of the important research areas
within the field of deep learning.

4 Hand wavy Proof for Cybenko’s Theorem

Figure 2: Function approximation

Approximating a continuous function f (x) using rectangles, we get some-
thing like Fig.2. If the width of each of those rectangles are considered to be
intervals(I1, I2, ...), the domain [−B, B] = I1 ∪ I2... ∪ In
So, f (x) ≈ ∑n

j=1 f (xi)1(x ∈ Ij) where xi ∈ Ii This approximation is good
because f is continuous Now, it only remains to show that the indicator func-
tion in the above approximation can be expressed in terms of the activation
function used. This can be shown for different activation functions. For eg:
For threshold functions, σ(x − a)− σ(x − a − δ) = 1(x ∈ (a, a + δ)) This can
be shown for any of the non-linearities. This is a simpler proof for Cybenko’s
Theorem.

3

	Introduction
	Artificial/Deep Neural Network
	Basic Goal of Neural Networks
	Expressibility
	Training Complexity and Training Dynamics for Gradient Descent and variants
	Generalization

	Hand wavy Proof for Cybenko's Theorem

