THEORY OF MACHINE LEARNING

LECTURE 22

NTK SUMMARY, REPRESENTATION LEARNING

ANNOUNCEMENTS

- Homework 3 due on Monday April 11
- Project presentations: starting in two weeks! (~18 projects)
- Dates: April 19, 22, 26 (5 projects /class), couple online
- This week and next: representation learning, robustness

LAST WEEK,$\langle x, \cdot\rangle$

$$
f\left(A^{(1)}\right)=b_{1}
$$

- Learning ANs is hard, often done via gradient descent
- Topics skipped - "strongest" hardness results based on crypto [Klivans, Sherstov] (hardness of improper learning)

- Analyzing gradient descent:
- Can one analyze dynamics of gradient descent? [can view as Kernel regression for a time-varying kernel] $r_{\text {- -phrasing. }}$
- Are there cases where we can reason about resulting solution? [for infinitely wide nets, kernel remains "fixed" - neural tangent kernel]

Law of Large Numbers (Con centration bounds)

NTK REVIEW

Theorem. [Jacot, Gabriel, Hongler 18] [Arora, et al. 2019] A width ~ n^3 network (any number of layers) trained via GD from random initialization achieves zero training error. Moreover, the final solution is equivalent to solving a "Kernel regression" problem with a specific kernel.
f. $K(x, y)$: similarity between x, y.

- Kernel regression

$$
\text { hypo theses of the form: } \hat{f}(x)=\sum_{i \in \text { training }}^{\text {samples. }} \alpha_{i} K\left(x, x_{i}\right)
$$

- Any model training can be viewed as Kernel regression with time varying kernel
- With wide DNNs, kernel doesn't change much!
(cam be used to show that (If width \gg (training data), then
* (GD with tiny step sing). NN training via GD converges to Kernel regression with NTK.).

NTK EXPERIMENTS

[Arora, et al. 2019] What happens if we forget about NNs, compute closed form for NTK (determined only by number of layers, types of connections, activation function), perform kernel regression?

Depth	CNN-V	CNTK-V	CNN-GAP	CNTK-GAP
3	61.97\%	64.67\%	57.96\%	70.47\%
4	62.12\%	65.52\%	80.58\%	75.93\%
6	64.03\%	66.03\%	80.97\%	76.73\%
11	70.97\%	65.90\%	75.45\%	77.43\%
21	80.56\%	64.09\%	81.23\%	77.08\%

REPRESENTATION LEARNING

- General idea - neural networks are "hierarchical feature extractors"
- Circa 2000s - manual feature extraction (HOG, SIFT)
- NNs embed inputs -> "feature space" (alternative 'representation')

layered \rightarrow builds iterative representations of data.
\rightarrow "related" Tastes
\rightarrow Caption generation.
$\longrightarrow[$ Bengio, ctal. 2012]
Fig. 1. Illustration of representation-learning discovering explanatory factors (middle hidden layer, in red), some explaining the input (semi-supervised setting), and some explaining target for each task. Because these subsets overlap, sharing of statictical strength helps generalization.

REPRESENTATION LEARNING
feature \leftrightarrows needing nesentation.

- What makes a good representation?

basis in which in puts have a "sparse" representation.
Supervised ys Unsupervised
shject boat.
\rightarrow Word embeddings.n NIP.
\rightarrow Graph vertex embeddings.

REPRESENTATION LEARNING
given data; no task;

- Unsupervised learning of representation no labels.
- Sparse coding/autoencoders (past)
- Self-supervision (future)
"Meta qu": Hater Want to "understand" data...
Formalizing: find comion patterss/compression.
succinct representation
Sparse Coding: Is there a "basis" for data in which all the data bass for points are \sim sparse?
(in the lin-alg.).
sense

In puts:

$$
x_{1}, x_{2}, \ldots, x_{N} \in \mathbb{R}^{d} \text {. }
$$

Can you find a "basis", $\dot{u}, v_{1}, v_{2}, \ldots, v_{m} \in \mathbb{R}^{d}$ such that every $x_{i} \approx \sum_{j} \alpha_{j}^{(i)} v_{j}$, for some "sparse" $\alpha^{(i)}$?
(at most k are non-zeno).
\# parameters in "input rep": $d N$ \#parameters in "new" rep:

Want $k N+m d \ll d N$.
JPEG: based on ~ ideas..
\rightarrow Layervise us supervised pre-taining (2013..)

