THEORY OF MACHINE LEARNING

LECTURE 23

REPRESENTATION LEARNING

ANNOUNCEMENTS

- Homework 3 due on Monday April 11
- Project presentations: starting in two weeks! (~18 projects)
 - <u>Dates:</u> April 19, 22, 26 (5 projects /class), couple online
- This week and next: representation learning, robustness

LAST CLASS

- Neural Tangent Kernels
 - Can one analyze dynamics of gradient descent? [can view as Kernel regression for a time-varying kernel]
 - [Jacot et al.] for infinitely wide nets, kernel remains "fixed" neural tangent kernel; so NN learning == kernel regression
- NNs as Feature Learning or Representation Learning
 - NN transforms inputs -> "feature space embeddings", i.e., new representation
 - Why? Representations can have uses beyond classification (e.g., image captions, transfer learning, ...)

REPRESENTATION LEARNING

- What makes a good representation?
 - Contrastive (for classification)
 - "Disentangled" or orthogonal
 - Sparse "explanations" for phenomena
 - Hierarchically organized, explanatory
 - Leverage domain knowledge
- Supervised vs Unsupervised
 - Pros: contrastive, better accuracy for given task, no special training
 - Cons: may not generalize

- Pros: generalizes to many tasks, no careful data collection needed
- Cons: unclear how to learn!

UNSUPERVISED REPRESENTATION LEARNING

 <u>Classic approaches:</u> manual feature engineering, autoencoders and "sparse coding"

- More modern: self-supervised learning, invariances and data augmentation
 - Example: NLP tasks

A Neural Probabilistic Language Model

Yoshua Bengio Réjean Ducharme Pascal Vincent Christian Jauvin BENGIOY@IRO.UMONTREAL.CA
DUCHARME@IRO.UMONTREAL.CA
VINCENTP@IRO.UMONTREAL.CA
JAUVINC@IRO.UMONTREAL.CA

Département d'Informatique et Recherche Opérationnelle Centre de Recherche Mathématiques Université de Montréal, Montréal, Québec, Canada

Editors: Jaz Kandola, Thomas Hofmann, Tomaso Poggio and John Shawe-Taylor

Abstract

A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the **curse of dimensionality**: a word sequence on which the model will be tested is likely to be different from all the word sequences seen during training. Traditional but very successful approaches based on n-grams obtain generalization by concatenating very short overlapping sequences seen in the training set. We propose to fight the curse of dimensionality by **learning a distributed representation for words** which allows each training sentence to inform the model about an exponential number of semantically neighboring sentences. The model learns simultaneously (1) a distributed representation for each word along with (2) the probability function for word sequences, expressed in terms of these representations. Generalization is obtained because a sequence of words that has never been seen before gets high probability if it is made of words that are similar (in the sense of having a nearby representation) to words forming an already seen sentence. Training such large models (with millions of parameters) within a reasonable time is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach

REPRESENTATION LEARNING IN NLP

Approaches based on Firth's hypothesis

REPRESENTATION LEARNING IN GRAPHS