## THEORY OF MACHINE LEARNING

## LECTURE 21

GRADIENT DESCENT FOR NN: NEURAL TANGENT KERNEL

ANNOUNCEMENTS

- Homework $3_{3}$ due on (Monday April 11 )

$$
A x=b
$$



- Stability in optimization
- Depth vs width (converse) $\qquad$

$$
F_{3} \text { vs. } F+h \cdot \exp (k)
$$

$\min \|A x-b\|^{2}$

- Learning parities - earliest lower bound for deep learning $\rightarrow$ Sole found by grad descent ring parities - earliest lower bound for deep learning
(possible via other lalfos; not via deepleaing). will be "simple"
efficient $\left(n^{3}.\right)$ This is one reason the
- Last lecture's discussion on feature learning
$\rightarrow$ This is one reason these models don't overfit.


## NEURAL NETWORK TRAINING

$\uparrow \quad\left(x_{N}, y_{\nu}\right)$

- Question (supervised learning): given data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ from some distribution $D$, find $h$ (with given "architecture") that minimizes the risk
- Really hard theoretically (even if inputs Gaussian and risk zero is achievable) $\uparrow$
- In practice, solved via gradient descent
[fast implementation (backprop) by Rumelhart, Hinton, Williams]
- Question for today:

$$
\begin{aligned}
& f(\omega ; x) \\
& L(\omega)=\sum_{i=1}^{N}\left(f\left(\omega ; x_{i}\right)-y_{i}\right)^{2} \\
& \omega^{(0)} \rightarrow \omega^{(1)} \rightarrow \ldots
\end{aligned}
$$



- How can one analyze dynamics of gradient descent?
- Are there cases where we can reason about resulting solution?

OVER-PARAMETRIZATION
\#parcumeters $\gg$ \#inputs ( $N$ ).
$|\omega|$

- Observation: modern deep nets pretty overparametrized, but they still don't overfit $\quad[W h y ?$. Belkin et al., "double descent".].
- Question out of desperation: Is GD easier to analyze when network is "heavily" overparametrized? $\rightarrow$ this is one setting where $L\left({ }^{*}{ }^{*}\right)=0$
[Allenzhu,..]

Theorem. [Jacot, Gabriel, Hongler 18] [Arora, et al. 2019] A width ~N 3 network (any number of layers) trained via GD from random initialization achieves zero training error. Moreover, the final solution is equivalent to solving a "Kernel regression" problem with a specific kernel.
defined "Neural Tangent" kernel.


ASIDE: KERNEL REGRESSION

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)
$$

- Ubiquitous motivation: function value known at a bunch of points, "interpolate" to rest of space
- One way to think of all of ML!

- Consider interpolation via functions of specific form...


$$
\alpha_{1} \times \underset{\text { similarity with }}{\text { given datapoint } x_{1}}+\alpha_{2} \times \underset{\text { simith } x_{2}}{\text { sits }}+\ldots
$$

$$
\left\{\begin{array}{c}
K(x, y): \text { "Kernel" } \\
K \\
\frac{K(x, y)}{Y}=\left\{\begin{array}{cc}
1 \text { if }\|x-y\|<r \\
0 & \text { othenise. }
\end{array}\right. \\
e^{-\frac{\|x-y\|^{2}}{r^{2}}}
\end{array}\right.
$$

Simplest/most natural: choose $\alpha_{i}$ so that $\hat{G_{0}} \underbrace{\left(x_{i}\right)=y_{i}}_{\underline{y_{i}}} \forall i$
want to find coeffes $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$.

$$
\begin{array}{r}
\hat{f}\left(x_{1}\right)=y_{1}
\end{array} \longleftrightarrow \alpha_{1} \underline{\left(x_{1}, x_{1}\right)}+\alpha_{2} k\left(x_{1}, x_{2}\right)+\ldots+\alpha_{N} k\left(x_{1}, x_{N}\right)=y_{1}
$$

$\checkmark$ linear eqn in the $\alpha$ 's
(since we know the $\left.x_{i} . ..\right)$
$\rightarrow$ opt sole: $\alpha=k^{-1} y$.
$\left.\begin{array}{l}\rightarrow \text { Try to minimize } g(\alpha)=\|K-y\|^{2} \text { using gradient descent (with } \\ \left.(0) \quad \begin{array}{l}\text { aram }=\alpha\end{array}\right) \\ \nabla g^{(\alpha)}=2 K(K \alpha-y)\end{array}\right)=$ initialize: $\alpha^{(0)}$

$$
\begin{aligned}
& \underline{V}^{(\alpha)}=2 K(k \alpha-y)= \\
& \alpha^{(t+1)}=\alpha^{(t)}-\eta \cdot \nabla g\left(\alpha^{(t)}\right)
\end{aligned}
$$

$$
\text { to the } \hat{f}
$$

Qu: What happens 1 as you do steps of GD?

$$
\begin{aligned}
& \hat{f}\left(\alpha^{(t)} ; x\right)=\sum_{i=1}^{N} \alpha_{i}^{(t)} k\left(x ; x_{i}\right) \\
& \hat{f}\left(\alpha^{(t+1)} ; x\right)-\hat{f}\left(\alpha^{(t)} ; x\right)=-\eta\left\langle\nabla \hat{f}\left(\alpha^{(t)} ; x\right), \nabla g\left(\alpha^{(t)}\right)\right\rangle \\
&=-\eta\left\langle\nabla \hat{f}\left(\alpha^{(t)} ; x\right), \sum_{i=1}^{N}(\hat{f}-y)_{i} \nabla \hat{f}\left(\alpha^{(t)} ; x_{i}\right)\right) \\
&(\text { exercise }) \\
&=-\eta \sum_{i=1}^{N}(\hat{f}-y)_{i} K\left(x, x_{i}\right)
\end{aligned}
$$

NEURAL NET TRAINING REVISITED

$$
\begin{aligned}
& L(\omega)=\frac{1}{2} \sum_{i=1}^{N}\left(f\left(\omega ; x_{i}\right)-y_{i}\right)^{2} \\
& \nabla_{\omega} L(\omega)=\sum_{i=1}^{N} \frac{\left(f\left(\omega ; x_{i}\right)-y_{i}\right) \cdot \nabla f\left(\omega ; x_{i}\right)}{\omega^{(t+1)}=\omega^{(t)}-\eta \cdot \omega \cdot L\left(\omega^{(t)}\right) \quad \text { gradient descent) }}
\end{aligned}
$$



Qn: how does $f\left(\omega^{(t)}, x_{0}\right)$ "evolve" as time progresses?

$$
\begin{aligned}
& f\left(\omega^{(t+1)} ; x\right)-f\left(\omega^{(t)}, x\right) \quad \frac{f(\omega(\varepsilon \varepsilon ; x)-f(\omega ; x)}{\langle\nabla f(\omega ; x), \varepsilon\rangle} \\
& f\left(\omega^{(t)}-\eta \nabla L\left(\omega^{(t)}\right) ; x\right)-f\left(\omega^{(t)} ; x\right)=-\eta\left\langle\nabla f\left(\omega^{(t)}, x\right), \nabla L\left(\omega^{(t)}\right)\right.
\end{aligned}
$$

Defining $f\left(\omega^{(t)}, x_{i}\right)=u_{i}^{(t)}$,

$$
\begin{aligned}
& \text { f( } \left.\omega^{(t)}, x_{i}\right)=u_{i}, \eta\left\langle\nabla f\left(\omega^{(t)}, x\right), \sum_{i=1}^{N}\left(u_{i}^{(t)}-y_{i}\right) \nabla f\left(\omega^{(t)}, x_{i}\right)\right\rangle \\
& =-\eta \sum_{i=1}^{N}\left(u_{i}^{(t)}-y_{i}\right)\langle\nabla \underbrace{f\left(\omega^{(t)}, x\right), \nabla f\left(\omega^{(t)}, x_{i}\right)}_{(t)}\rangle \\
& x_{1}
\end{aligned}
$$

for any $x_{1}$

$$
f\left(\omega^{(t+1)} ; x\right)-f\left(\omega^{(t)} ; x\right)=-\eta \cdot \sum_{i=1}^{N}\left(u_{i}^{(t)}-y_{i}\right),{ }^{(t)}\left(x ; x_{i}\right) .
$$

Moral: gradient descent $\equiv$ Kernel regression with a time-varying "Tangent" Kernel.
$\rightarrow$ For very wide NASY, Kernel remains "nearly fixed" with time. initialized randomly (with Gaussian)

For "large" amount of time, $\omega^{(t)}$ doem't change much! $\omega^{(H)}$ canchange very slightly \& still a chiere zeno error..
$\rightarrow$ w's don't correspond to "useful" features.
(random features [Ratimi; Rect])

## KERNEL IN THE INFINITE WIDTH LIMIT

