
Lecture #: Regularization and Stability

Instructor: Aditya Bhaskara Scribe: Anurag Gupta

CS 5966/6966: Theory of Machine Learning

March 3rd, 2022

Abstract

In this lecture we go over the concepts of regularization and stability,
and how stability is related to generalization and concentration bounds.
We discuss when do we call a function to be stable, and what effect chang-
ing a few input points can have on the stability of the loss function.

1 Improvements and Generalization

Heavy Ball Method (Momentum): On a high level to add to the update equa-
tions an additional term which depends on the previous movement.

wt+1 = wt − η∇ f (wt)− ∂(wt − wt−1)

As seen in the previous lecture, for strongly convex functions our error after
T steps was exp(− µ

M .T) or exp(− 1
κ .T), but when we use the above update

method (momentum) for strongly convex functions, we observe that we can
achieve a better bound like exp(− 1√

κ
.T).

Second order methods, and first order proxies: Vanilla gradient descent is a
first order update method, since it involves only the first order derivative.
Adagrad is a first order approximation to the second order methods. Newton
method is a type of a second order method wherein instead having a fixed η
value we choose a η that depends on the Hessian.

We notice that in the above methods the general theme is to avoid the slow
convergence which is what happens in gradient descent, the above methods
suggest to move fast in the regions where it is possible for the convergence
function to move fast by taking larger steps.

We see how this theme of taking large steps when possible can help us in
different ways:-

Helpful when dealing with non-convex functions : It is possible for us to get
stuck at a local minima, but if we had some momentum we could keep moving
further along and get out of it.

Perturbed Gradient Descent: Since the amount of movement is dependent on
the gradient of the function, in cases the gradient is tiny the movement is also
very little, and so to tackle this after a little while of not moving we make a
random jump to a uniformly random point in the certain ball around of that
point and then continue again.

1

2. Choosing Loss Functions

Can also help us prove formally that this method allows for us to get bad
saddle points.

Finally, we see that when this process converges, we end up at an ”approxi-
mately” local minima.
We define local minima as the point where the value of the Hessian is positive
semi-definite (∇2 f ≥ 0), ”approximately” local minima is a point where the
Hessian is not positive semi-definite but greater than some small constant s
times I (∇2 f ≥ s.I).

2 Choosing Loss Functions

The motivation for choosing loss functions: If we are able to choose a nice or
smooth loss function then we know that the optimization can be done faster.

Consider data points (x1, y1), (x2, y2), . . . , (xm, ym), with the loss function,

Loss(w) =
1
m

.
m

∑
i=1

l(w, xi, yi)

If we wish for the above loss function to be smooth we can add an additional
term, to make it strongly convex, so our new loss function becomes,v

Loss(w) =
1
m

.
m

∑
i=1

l(w, xi, yi) + θ∥w∥2

this can also be achieved by replacing function l with another function l′,
where,

l′(w, xi, yi) = l(w, xi, yi) + θ∥w∥2

But it’s important to note that when θ, gets a very large value, the second term
in the above equation starts to dominate the first term (which is our objective
term), so we end up minimizing the second term instead of our objective.

The benefit of having a nice or a smooth loss function is not only that the loss
function optimizes well, but also that it generalizes well and also provides
stability to input changes.

In plain terms, we can think of stability as when we a have bunch of inputs
and we minimize it’s loss and find the optimal value of w, now we change
some data point in our input and again repeat the above procedure of mini-
mizing the loss and calculating the optimal w′, when w and w′ are very close
to each other we call the function to be stable.

If a function is stable it also generalizes well and stability is also related to
concentration inequalities.

2

3 Stability of a Loss Minimization Algorithm

Let us consider an example, where we are given input points (x1, y1), (x2, y2), . . . , (xm, ym),
with the loss function

L(w) =
1
m

.
m

∑
i=1

l(w, xi, yi)

And after minimizing the loss, we find the argminwL(w) = w∗.

We can consider a map from the input examples to the parameter value w, so
we can say, for an input,

S = {(x1, y1), (x2, y2), . . . , (xm, ym)}

we get w∗(S), which is the best function when we are in S. We think of this as
deterministic training procedure, which means that, given some fixed input
we only get a fixed output.
Here w∗ is a map that takes some input and produces the best hypothesis for
an S.

Now how does changing a single (xi, yi) change the w∗?

Consider S′,

S′ = {(x1, y1), (x2, y2), . . . , (xm−1, ym−1), (x′m, y′m)}

for which we get w ∗ (S′).

Let’s formally define stability here first. Loss function is said to be δ(m)-stable
(for training sets of size m), if ∀ x, y, x′m, y′m as above ∥w ∗ (S′)− w ∗ (S′)∥ ≤
δ(m).

Now let’s say our loss functions are bounded between [0, 1] always, and we
change one of the points, what should be the difference between the objective
values at both the stages? It should definitely not be more than 1

m , since we
can think of it as, that there are m examples, and we are changing only 1 value,
so the objective value should not change by more than 1

m . So we can say,

∥L(w∗(S′))− L(w∗(S))∥ ≤ 1
m

4 Understanding Stability - Linear Functions

Suppose we are optimizing over w ∈ [−1, 1], and we have the loss function
values for all our training examples, which are of the fashion, w for the first
training example (l1(w)), −2w for the second training example (l2(w)), 2w for
the third training example (l3(w)), −2w, 2w, . . . for the following training ex-
amples.

Now if we examine,

L(w) =
1
m

.
m

∑
i=1

li(w)

3

6. Concentration Bounds and Stability

we see that,

argminwL(w) =

{
−1 is m is even
1 is m is odd

And when we change any of the 2w loss function’s value to a −2w value, in
that case the argminwL(w) flips from +1 to −1.

So we can say that, in general changing one of the li’s can significantly change
the w∗.

4.1 theorem. If L(w) is α-strongly convex and we replace li(w) with l′i(w) such
that ∥∇(l′i − li)∥ ≤ G say, then ∥w∗(S′)− w∗(S)∥ ≤ G

mα .

It is saying that, if we change one of the input terms the loss functions gets
changed by a value roughly 1

m and also the optimizer gets changed by value
1
m , if the value G is not too big and α is not too small.

So, we can say that if the loss function is chosen such that the objective be-
comes strongly convex then we automatically have stability along with fast
convergence and other good properties, like generalization.

5 Stability implies Generalization

Generalization Gap is defined as |Loss on test − Loss on training|, where the
data is independent and identically distributed and ∈ to a distribution D.

Suppose our loss function l(w, xi, yi) is δ(m)-stable then, the generalization
error is ≤ δ(m).

Loss on test of w∗(S) = Ex′m Dl(w∗(S), x′m)
Loss on training of w∗(S) = Ei [m]l(w∗(S), xi)

The Loss on training can also be written as Ei′Ei [m]l(w∗(S\xi + x′i), xi).

Regularization has two benefits which are, firstly, it helps improve the general-
ization gap, which can at times be a ”fake win” sometimes since it is possible
that we might have high error before regularization. And secondly, it helps
improve convergence.

6 Concentration Bounds and Stability

Consider the Chernoff bound, where X1, X2, . . . , Xn are independent and iden-
tically distributed variables from distribution D, with support [a, b], and a
mean µ,

Pr[| 1
n
(X1 + X2 + · · ·+ Xn − µ)| > t] ≤ e−

t2n
a−b

4

Now suppose we change a random variable, X′
n, then it can maximum differ

in value by a−b
n .

This can be shown by a similar result by Talagrand,

6.1 theorem. Let f be any function which is δ-stable, that is,

| f (X1, X2, . . . , Xn)− f (X1, X2, . . . , Xi−1, X′
i , . . . , Xn)| ≤ δ

then, if X1, X2, . . . , Xn are independent and identically distributed random variables
then,

Pr[| f (X1, X2, . . . , Xn)− median value of the function| ≥ t] ≤ e−
t2n
δ2

It basically says that, the probability that the function value for the IID vari-
able X1, X2, . . . , Xn, differs from the median function value depends on the
smoothness parameter δ.
So if we take any function which does not change too much we can say that it
is very well concentrated.

5

	Improvements and Generalization
	Choosing Loss Functions
	Stability of a Loss Minimization Algorithm
	Understanding Stability - Linear Functions
	Stability implies Generalization
	Concentration Bounds and Stability

