
Lecture 14: Strong Convexity, Regularization

and Stability

Instructor: Aditya Bhaskara Scribe: Sai Raghavendra Sugeeth Puranam

CS 5966/6966: Theory of Machine Learning

March 1st, 2022

Abstract

In this lecture we went over the Summary of Gradient Descent, went
briefly over parallelizing gradient descent. We also discussed about Opti-
mal bounds, Preconditioning, how we can use first order methods to ap-
proximate for second order methods and briefly went into the motivation
for Strong Convexity.

1 Summary of Gradient Descent

Gradient Descent is a simple iterative first order algorithm which tries to find
argmin of f (x) over a convex domain D where x ∈ D.

If the function is a L-Lipschitz, we can say that the error after T steps is in the
order of O(1√

T
). That is formally defined as below.

f (x̄t)− f (x∗) ≤ O(
1√
T
)

where, f is the function used to calculate the error,
xt is the point reached after T steps,
x∗ is the point with minimum error

Smooth Convex function: Generally we can define a function as ”smooth” if
the gradient doesn’t change abruptly. Formally if the gradient is M-Lipschitz.

If the step size is < 1
2M after T steps, the error will be in the range of O(1

T) as
opposed to O(1√

T
).

so formally for smooth convex function,

f (x̄t)− f (x∗) ≤ O(
1
T
)

µ Strong Convex function: A function is said to be µ Strong Convex function
if

f (y) ≥ f (x)+ < ∇ f (x), y − x > +µ||y − x||2

where y and x are points on the strong convex function.

with a strong convex function, convergence bound improves to roughly exp(− µ
M T)

which is significantly good compared to Smooth convex function.

Strong convexity based results are good only if the condition number: M
µ is

”small”.

1

3. ”Optimal” Bounds

2 Parallelism and Complexity

Most of the optimization literature assumes that gradients are ”easy” to get
and Hessians are ”complex”

We have a the function as f : Rd → R Gradients are easy because gradient is
a vector in Rd whereas Hessians are complex because hessian is a matrix in
Rd∗d

But sometimes gradients can also be difficult or time consuming to compute
let’s say in least squares regression, gradients could take time in order of d2.

So can we parallelize gradient descent? No they cannot be parallelized across
time but all gradients of variables at one step can be computed in parallel.
Hence epochs must be done in series. This is the reason most of the literature
tries to represent error as the dependence on T. So less the number of iterations
it is better.

Second order methods: Normally we do the following update.

wt+1 = wt − η∇ f (wt)

But sometimes second order update as below is preferred,

wt+1 = wt −
H−1

2
∇ f (wt)

by doing the second order update the number of iterations will be very small.
But inverting the H matrix is the costly operation. So efforts have been directed
in inverting a matrix faster by using parallelization.

Most recent papers like training an ImageNet under an hour etc try to use
second order methods for fast convergence. They try to do matrix approxima-
tions by using tricks from numerical methods.

It is most promising to do the inversion by modelling it as an optimization
problem but it shouldn’t be done naively but preconditioning should be used
to do this approximation which is discussed in the next sections.

Interest has also fizzled out in this area. If you don’t have derivatives correctly
these Hessian methods don’t seem to work properly. They converge quickly
but the guarantee is not really great. These second order methods work for
certain applications but are not universal.

3 ”Optimal” Bounds

With just the L-L-Lipschitz assumption for a function, the error O(1√
T
) cannot

be improved at least with ”sub-gradient oracle”. Hence this is a tight bound
and cannot be improved.

But we can do improvement for smooth functions. Assuming the function is
purely smooth, with Nesterov acceleration, we can get improve the error to
O(1

T2). Works have been done to extend this Nesterov acceleration to Stochas-
tic gradient descent.

But all of these use the fact that there is an oracle that gives the gradient. But
the question arises ”what if we can use the information beyond the gradient?”
This question is answered in subsequent section of Preconditioning.

2

4 Preconditioning

Hessian plays an informal role in most Gradient Descent Analysis (even M-
smooth). To illustrate this, lets take an example as below.

Let us consider a simple function

f (x1, x2, x3) = x2
1 +

x2
2

4
+

x2
3

9

The optimal value of this function is at value (0, 0, 0)

Let us say we start at some point (1, 1, 1) to reach the optimal point.

The gradient of f ∇ f = (2x1, 2x2/4, 2x3/9). The Lipschitz constant of ∇ f
would be 2 because of the first co-ordinate(as its values changes by a factor of
2).

So when we start at the point x(0) = (1, 1, 1), ∇ f (x(0)) = (2, 1/2, 2/9)

then considering a step size of 1
4 ,

x(1) = x(0) − 1
4
∇ f (x(0)) = (1/2, 7/8, 8/9)

So the second and third co-ordinates take a while to reach 0 because the gra-
dients are small.

So the limiting factor will be the third co-ordinate and it will lead to slower
convergence.

How to solve this?: Looking back at the Lipschitz constants it is seen that for
the 2nd and 3rd co-ordinate the Lipschitz constants are much lower (2

4 and 2
9

respectively). So we can move aggressively in those directions. So the idea
is instead of moving along the derivative the movement can be along the
derivative scaled different for each derivative. This broad idea is called as
Preconditioning.

The Hessian is the key to move different along different directions. The opti-
mal movement is done using second order information.

To illustrate this, let us consider a function that behaves like a quadratic in its
neighborhood.

f (x + δ) = f (x)+ < δ,∇ f (x) > +
1
2

δT(∇2 f (x))δ + ..

the ∇2 f (x) term is the Hessian at x.

Similarly, in 1-Dimension if f is a 1-Dimensional function,

f (x + δ) = f (x) + δ f ′(x) + δ2 f ′′(x)

which is a quadratic function in δ

This quadratic form will be minimum at

δ =
− f

′
(x)

f ′′(x)

3

6. Motivation for Strong Convexity

the higher dimension analogous of this is,

δ = −(∇2 f (x))−1∇ f (x)

So when using second order methods, we jump to the above point in the
next iteration. Which leads to fast convergence. But for this to be formal the
quadratic approximation must hold which doesn’t usually happen because of
the 3rd order term.

5 Improvements, Generalizations

AdaGrad: This is like a first order approximation to the second order methods.
The idea is you try to find the scale of the direction by looking at more and
more samples. Essentially keeping track of approximation of Hessian by using
first order information.

Polyak’s ”heavy ball” method(momentum): For strongly convex function we
can do aggressive updates using the momentum information instead of e−

T
κ

we can have convergence bound of e−
T√
κ .

There are also many other methods like Newton’s second order methods
which try to achieve these improvements in convergence steps.

6 Motivation for Strong Convexity

We already saw that strong convexity leads to ”faster” optimization.

Additional Benefit of strong convexity is the ”stability” to small perturbation.

Stability to Perturbation: Let us consider a strongly convex function f (x)
and there is another function g(x) = f (x) + δ(x) if the δ(x) is not big the
argmin f (x) is ”close” to argming(x). This effect of strong convex functions is
called stability.

Illustratively, if f (x) = x2, g(x) = x2 + αx which have min at 0 and − α
2 re-

spectively. If α is small we can have a fair idea of g(x) using f (x).

4

	Summary of Gradient Descent
	Parallelism and Complexity
	"Optimal" Bounds
	Preconditioning
	Improvements, Generalizations
	Motivation for Strong Convexity

