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Abstract
This lecture recaps the basic theorem underpinning gradient descent

and the effect of function smoothness on convergence. New material in-
cludes strong convexity and the Polyak-Lojasiewicz inequality which offer
improved bounds and generalizations on gradient descent.

1 Basic Theorem Recap

Assume f is L Lipschitz, domain is all of Rd, |w0 −w∗| ≤ B. Without any other
constraints of f , we have the following theorem.

Consider running T steps of gradient descent with a fixed learning rate η.
Then we have:

(1)
1
T

T

∑
t=1

f (wt)− f (w∗) ≤ B2

2ηT
+

L2η

2

When η is correctly tuned the RHS approximates LB√
t
.

This theorem utilizes the basic inequality about convex functions that for any
point on the function, the tangent of the point lies below the function. Mathe-
matically this is equivalent to:

f (w∗) ≥ f (wt) + ⟨w ∗ −wt, ∆ f (wt)⟩

In addition, this theorem uses the potential function:

ϕt = |wt − w∗|2

2 Noisy Gradient Descent Recap

The intuition that for equation (1), f does not need to be the same function at
every timestep allows us to generalize the theorem to the noisy case.

Let g be a ”noisy gradient oracle” that returns a random variable g(w) when
given w, S.T. E[g(w)] = ∆ f (w) with a variance bound E[||g(w)||2] ≤ L2.

Given that g introduces unbiased noise with low variance, this concept allows
gradient descent to generalize to stochastic sampling and gradient descent
with privacy considerations.
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5. Gradient Descent on Smooth Functions

3 Additional Structure: Smoothness Recap

Function f is M smooth if gradient of f is M-Lipschitz, mathematically this is:

||∆ f (x)− ∆ f (y)|| ≤ M||x − y|| ↔ ||∆2 f (x)||2 ≤ M

This directly implies ∀x, y:||∆2 f (x)||2 is the magnitude of the largest
eigenvalue.

f (y) ≤ f (x) + ⟨∆ f (x), y − x⟩+ M||y − x||2

Intuitively, this states that the curvature of f is bounded by M, which also
implies that every iteration of gradient descent yields a drop in the function
value.

After T steps, ∑t |∆ f (wt)|2 is bounded by 4M( f (w0)− f (w∗)).

Key observations for gradient descent on smooth functions:

1. Convergence rate of 1/T.

2. Gradient descent on smooth non-convex functions converges to ”ap-
proximately singular” points.

4 Matrix Basics

Let A ∈ Rd×d, z = (z1, ..., zd)
The quadratic form in d variables:

zT Az = ∑
i,j

Aijzizj

Example: for the matrix
(

1 −1
0 1

)
, the quadratic form is z2

1 − z1z2 + z2
2.

The max z with ||z|| = 1 of the quadratic form is the largest eigenvector of A.
Mathematically:

max
||z||=1

zT Az = max
λ

A

5 Gradient Descent on Smooth Functions

Gradient descent update function:

wt+1 = wt − η∆ f (wt)

Alternate definition of smoothness as it relates to the update function:

f (wt+1) ≤ f (wt) + ⟨∆ f (wt), wt+1 − wt⟩+ M||wt+1 − wt||2

Let η = 1/2m and simplify:wt+1 − wt = −η∆ f (wt)

f (wt + 1) ≤ f (wt)−
η

2
||∆ f (wt)||2

With the function being smooth, this shows convergence of 1/T.
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6 Can We Go Beyond 1/T Convergence?

Purely assuming smoothness we can get rate of 1/T2 (Nesterov 1983).

Formally, consider GD-like procedures, where wt+1 = H(w1, w2, ..., wt, ∆ f (w1), ∆ f (w2), ..., ∆ f (wt)).
For all procedures of this kind, error after t iterations must be ≥ 1

t2 in the worst
case. This is also known as the oracle lower bound.

7 Strong Convexity

Function f is µ-strongly convex if we have a lower bound via a parabola.
Mathematically:

f (y) ≥ f (x) + ⟨∆ f (x), y − x⟩+ µ||y − x||2.

If f is both µ-strongly convex and m-smooth, f is bounded by two parabolas.
This equivalently means the hessian is bounded between two parabolas.

∀n, µI ⪯ ∆2 f (n) ⪯ MI

Without strong convexity we had:

f (w∗) ≥ f (w) + ⟨∆ f (w), w∗ − w⟩

With the addition of f being strongly convex we have an additional term on
the RHS.

f (w∗) ≥ f (w) + ⟨∆ f (w), w∗ − w⟩+ µ||w∗ − w||2

Utilizing the potential function: ||w∗ − w||2 is the potential function ϕt

ϕt+1 = ||wt − η∆ f (wt)− w∗||2

= ϕt − η⟨∆ f (wt), wt − w∗⟩+ η2||∆ f (wt)||2

From the smoothness constraint we had:

f (wt+1) ≤ f (wt)−
η

2
||∆ f (wt)||2, η <

1
2M

||∆ f (wt)||2 ≤ 2
η
( f (wt)− f (wt+1))

Now, using µ-strong convexity:

ϕt+1 ≤ ϕt − η( f (wt)− f (w∗))− ηµϕt +
2
η
( f (wt)− f (wt+1))

After T steps:

ϕT ≤ (1 − µ

8M
)T B2 ≤ e−µT/8MB2

Thus, if we want this to be < ϵ, then we must pick T ≈ log(B2/ϵ)8M/µ or
T ≈ (M/µ)log( 1

ϵ )
M/µ is the condition number.
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8. Gradient Descent Generalization

8 Gradient Descent Generalization

Polyak-Lojasiewicz inequality: suppose f satisfies:

|∆ f (w)|2 ≥ c( f (w)− f (w∗))∀w

This holds for strongly convex functions, but can also be satisfied for non-
convex functions.
If this inequality holds for f then:

f (wt+1) ≤ f (wt)−
η

2
||∆ f (wt)||2

f (wt+1)− f (w∗) ≤ f (wt)− f (w∗)− η

2
||∆ f (wt)||2

||∆ f (wt)||2 ≥ c( f (wt)− f (w∗))

f (wt+1)− f (w∗) ≤ (1 − c
η

2
)( f (wt)− f (w∗))
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