Lecture #14: Gradient Descent for Strongly Convex Functions

Instructor: Aditya Bhaskara Scribe: Alex Stewart

CS 5966/6966: Theory of Machine Learning

March 3rd, 2022

Abstract

This lecture recaps the basic theorem underpinning gradient descent and the effect of function smoothness on convergence. New material includes strong convexity and the Polyak-Lojasiewicz inequality which offer improved bounds and generalizations on gradient descent.

1 Basic Theorem Recap

Assume f is L Lipschitz, domain is all of R^d , $|w_0 - w^*| \le B$. Without any other constraints of f, we have the following theorem.

Consider running T steps of gradient descent with a fixed learning rate η . Then we have:

(1)
$$\frac{1}{T} \sum_{t=1}^{T} f(w_t) - f(w^*) \le \frac{B^2}{2\eta T} + \frac{L^2 \eta}{2}$$

When η is correctly tuned the RHS approximates $\frac{LB}{\sqrt{t}}$.

This theorem utilizes the basic inequality about convex functions that for any point on the function, the tangent of the point lies below the function. Mathematically this is equivalent to:

$$f(w^*) \geq f(w_t) + \langle w * -w_t, \Delta f(w_t) \rangle$$

In addition, this theorem uses the potential function:

$$\phi_t = |w_t - w^*|^2$$

2 Noisy Gradient Descent Recap

The intuition that for equation (1), f does not need to be the same function at every timestep allows us to generalize the theorem to the noisy case.

Let g be a "noisy gradient oracle" that returns a random variable g(w) when given w, S.T. $E[g(w)] = \Delta f(w)$ with a variance bound $E[||g(w)||^2] \le L^2$.

Given that *g* introduces unbiased noise with low variance, this concept allows gradient descent to generalize to stochastic sampling and gradient descent with privacy considerations.

3 Additional Structure: Smoothness Recap

Function *f* is M smooth if gradient of *f* is M-Lipschitz, mathematically this is:

$$||\Delta f(x) - \Delta f(y)|| \le M||x - y|| \leftrightarrow ||\Delta^2 f(x)||_2 \le M$$

 $||\Delta^2 f(x)||_2$ is the magnitude of the largest eigenvalue.

This directly implies $\forall x, y$:

$$f(y) \le f(x) + \langle \Delta f(x), y - x \rangle + M||y - x||^2$$

Intuitively, this states that the curvature of f is bounded by M, which also implies that every iteration of gradient descent yields a drop in the function value.

After T steps, $\sum_t |\Delta f(w_t)|^2$ is bounded by $4M(f(w_0) - f(w^*))$.

Key observations for gradient descent on smooth functions:

- 1. Convergence rate of 1/T.
- 2. Gradient descent on smooth non-convex functions converges to "approximately singular" points.

4 MATRIX BASICS

Let $A \in R^{d \times d}$, $z = (z_1, ..., z_d)$

The quadratic form in d variables:

$$z^T A z = \sum_{i,j} A_{ij} z_i z_j$$

Example: for the matrix $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, the quadratic form is $z_1^2 - z_1 z_2 + z_2^2$.

The max z with ||z|| = 1 of the quadratic form is the largest eigenvector of A. Mathematically:

$$\max_{||z||=1} z^T A z = \max_{\lambda} A$$

5 Gradient Descent on Smooth Functions

Gradient descent update function:

$$w_{t+1} = w_t - \eta \Delta f(w_t)$$

Alternate definition of smoothness as it relates to the update function:

$$f(w_{t+1}) \le f(w_t) + \langle \Delta f(w_t), w_{t+1} - w_t \rangle + M||w_{t+1} - w_t||^2$$

Let $\eta = 1/2m$ and simplify:

$$f(w_t + 1) \le f(w_t) - \frac{\eta}{2} ||\Delta f(w_t)||^2$$

With the function being smooth, this shows convergence of 1/T.

 $w_{t+1} - w_t = -\eta \Delta f(w_t)$

6 CAN WE GO BEYOND 1/T CONVERGENCE?

Purely assuming smoothness we can get rate of $1/T^2$ (Nesterov 1983).

Formally, consider GD-like procedures, where $w_{t+1} = H(w_1, w_2, ..., w_t, \Delta f(w_1), \Delta f(w_2), ..., \Delta f(w_t))$. For all procedures of this kind, error after t iterations must be $\geq \frac{1}{t^2}$ in the worst case. This is also known as the oracle lower bound.

7 STRONG CONVEXITY

Function f is μ -strongly convex if we have a lower bound via a parabola. Mathematically:

$$f(y) \ge f(x) + \langle \Delta f(x), y - x \rangle + \mu ||y - x||^2.$$

If f is both μ -strongly convex and m-smooth, f is bounded by two parabolas. This equivalently means the hessian is bounded between two parabolas.

$$\forall n, \mu I \leq \Delta^2 f(n) \leq MI$$

Without strong convexity we had:

$$f(w^*) \ge f(w) + \langle \Delta f(w), w^* - w \rangle$$

With the addition of f being strongly convex we have an additional term on the RHS.

$$f(w^*) \ge f(w) + \langle \Delta f(w), w^* - w \rangle + \mu ||w^* - w||^2$$

Utilizing the potential function:

 $||w^* - w||^2$ is the potential function ϕ_t

$$\phi_{t+1} = ||w_t - \eta \Delta f(w_t) - w^*||^2$$

= $\phi_t - \eta \langle \Delta f(w_t), w_t - w^* \rangle + \eta^2 ||\Delta f(w_t)||^2$

From the smoothness constraint we had:

$$f(w_{t+1}) \le f(w_t) - \frac{\eta}{2} ||\Delta f(w_t)||^2, \eta < \frac{1}{2M}$$
$$||\Delta f(w_t)||^2 \le \frac{2}{\eta} (f(w_t) - f(w_{t+1}))$$

Now, using μ -strong convexity:

$$\phi_{t+1} \le \phi_t - \eta(f(w_t) - f(w^*)) - \eta \mu \phi_t + \frac{2}{\eta} (f(w_t) - f(w_{t+1}))$$

After T steps:

$$\phi_T \le (1 - \frac{\mu}{8M})^T B^2 \le e^{-\mu T/8M} B^2$$

Thus, if we want this to be $< \epsilon$, then we must pick $T \approx log(B^2/\epsilon)8M/\mu$ or $T \approx (M/\mu)log(\frac{1}{\epsilon})$

 M/μ is the condition number.

8 Gradient Descent Generalization

Polyak-Lojasiewicz inequality: suppose f satisfies:

$$|\Delta f(w)|^2 \ge c(f(w) - f(w^*)) \forall w$$

This holds for strongly convex functions, but can also be satisfied for non-convex functions.

If this inequality holds for f then:

$$f(w_{t+1}) \le f(w_t) - \frac{\eta}{2} ||\Delta f(w_t)||^2$$

$$f(w_{t+1}) - f(w^*) \le f(w_t) - f(w^*) - \frac{\eta}{2} ||\Delta f(w_t)||^2$$

$$||\Delta f(w_t)||^2 \ge c(f(w_t) - f(w^*))$$

$$f(w_{t+1}) - f(w^*) \le (1 - c\frac{\eta}{2})(f(w_t) - f(w^*))$$