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Abstract

This lecture recaps the basic theorem underpinning gradient descent
and the effect of function smoothness on convergence. New material in-
cludes strong convexity and the Polyak-Lojasiewicz inequality which offer
improved bounds and generalizations on gradient descent.

1 Basic THEOREM REecAP

Assume f is L Lipschitz, domain is all of R, |wy — w*| < B. Without any other
constraints of f, we have the following theorem.

Consider running T steps of gradient descent with a fixed learning rate 7.
Then we have:
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When 7 is correctly tuned the RHS approximates %.

This theorem utilizes the basic inequality about convex functions that for any
point on the function, the tangent of the point lies below the function. Mathe-
matically this is equivalent to:

f(@?) = f(wr) + (w* —we, Af (we))

In addition, this theorem uses the potential function:
¢ = |wp — w*[?

2 Noisy GRADIENT DESCENT RECAP

The intuition that for equation (1), f does not need to be the same function at
every timestep allows us to generalize the theorem to the noisy case.

Let g be a “noisy gradient oracle” that returns a random variable ¢(w) when
given w, S.T. E[g(w)] = Af (w) with a variance bound E[||g(w)]|[?] < L2.

Given that g introduces unbiased noise with low variance, this concept allows
gradient descent to generalize to stochastic sampling and gradient descent
with privacy considerations.



||A%f(x)||2 is the magnitude of the largest
eigenvalue.

Wiy —wy = —nAf(wy)

5. GRADIENT DESCENT ON SMOOTH FUNCTIONS

3 ADDITIONAL STRUCTURE: SMOOTHNESS RECAP

Function f is M smooth if gradient of f is M-Lipschitz, mathematically this is:
1Af(x) = AfW)]| < Ml[x =yl ¢ [|A%f()]]2 < M
This directly implies Vx, y:

Fy) < f(0) + (Af(x),y = x) + My — x|

Intuitively, this states that the curvature of f is bounded by M, which also
implies that every iteration of gradient descent yields a drop in the function
value.

After T steps, Y, |Af(wy)|? is bounded by 4M( f(wg) — f(w*)).

Key observations for gradient descent on smooth functions:

1. Convergence rate of 1/T.

2. Gradient descent on smooth non-convex functions converges to “ap-
proximately singular” points.

4 MaATRIX BAsics

Let A € R,z = (zq,...,2)
The quadratic form in d variables:

2T Az = ZAijzizj
ij

Example: for the matrix <(1) _11> , the quadratic form is z2 — zyz + z3.

The max z with ||z|| = 1 of the quadratic form is the largest eigenvector of A.
Mathematically:

max z! Az = max A
[1zl|=1 A

5 GRADIENT DESCENT ON SMOOTH FUNCTIONS

Gradient descent update function:
Wi = wr — NAf (wy)
Alternate definition of smoothness as it relates to the update function:

fwia) < fwe) + (Af (wr),wi 1 — we) + M| [wr 1 — w|

Let 7 = 1/2m and simplify:

flwr+1) < f(w) = 2][Af ()|

With the function being smooth, this shows convergence of 1/T.



6 CaN WE Go BEYoND 1/T CONVERGENCE?
Purely assuming smoothness we can get rate of 1/T? (Nesterov 1983).

Formally, consider GD-like procedures, where w; 1 = H(wy, wy, ..., ws, Af (w1), Af (wy), ..., Af (wy)).
For all procedures of this kind, error after ¢ iterations must be > tlZ in the worst
case. This is also known as the oracle lower bound.

7  STRONG CONVEXITY

Function f is u-strongly convex if we have a lower bound via a parabola.
Mathematically:

fy) = f(x)+ (Af(x),y — x) + plly — x| >

If f is both u-strongly convex and m-smooth, f is bounded by two parabolas.
This equivalently means the hessian is bounded between two parabolas.

Vi, ul < A*f(n) < MI
Without strong convexity we had:
f@?) = f(w) + (Af(w),w* —w)

With the addition of f being strongly convex we have an additional term on
the RHS.

f@*) > f(w) + (Af (w),w" —w) + pl|w" — w||?

Utilizing the potential function: [|w* — w]||? is the potential function ¢;
Pri1 = [Jwr — A f(wp) —w*|?
= ¢t — (Af (W), wr — w*) + || Af (w) [P

From the smoothness constraint we had:

Fwi) < flwn) = HIaf@)I Py < o

1Af ()2 < §<f<wt> — F(wie1))

Now, using p-strong convexity:

Pri1 < fr— (f(w0) — (")) — e + ;(f(m) )
After T steps:

¢r < (1— ﬁ)TBZ < o HT/8Mp2

Thus, if we want this to be < ¢, then we must pick T ~ log(B?/€)8M/u or
T~ (M/p)log(¢)

M/ is the condition number.



8. GRADIENT DESCENT GENERALIZATION

8 GRADIENT DESCENT GENERALIZATION

Polyak-Lojasiewicz inequality: suppose f satisfies:

|Af ()2 = c(f(w) — f(w"))Vw

This holds for strongly convex functions, but can also be satisfied for non-
convex functions.
If this inequality holds for f then:

flwrsn) < flwr) = 2]Af ()] P

flwer) = f(w?) < flwe) = f(w") - gIIAf(Wt)II2
1Af ()] [? = e(f (wr) — f(w"))
flwir) = f(w?) < (1 —Cg)(f(w) - f(w"))
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