
THEORY OF MACHINE LEARNING

LECTURE 21

GRADIENT DESCENT FOR NN: NEURAL TANGENT KERNEL



ANNOUNCEMENTS

 Homework 3 due on Monday April 11

 Ideas

 Implicit regularization

 Stability in optimization

 Depth vs width (converse)

 Learning parities – earliest lower bound for deep learning

 Last lecture’s discussion on feature learning



NEURAL NETWORK TRAINING

 Question (supervised learning): given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … from some 

distribution D, find h (with given “architecture”) that minimizes the risk

 Really hard theoretically (even if inputs Gaussian and risk zero is achievable)

 In practice, solved via gradient descent 

[fast implementation (backprop) by Rumelhart, Hinton, Williams]

 Question for today:

 How can one analyze dynamics of gradient descent?

 Are there cases where we can reason about resulting solution?



OVER-PARAMETRIZATION

 Observation: modern deep nets pretty overparametrized, but they still 

don’t overfit

 Question out of desperation: Is GD easier to analyze when network is 

“heavily” overparametrized?

Theorem. [Jacot, Gabriel, Hongler 18] [Arora, et al. 2019] A width ~ n^3 

network (any number of layers) trained via GD from random initialization 

achieves zero training error. Moreover, the final solution is equivalent to 

solving a “Kernel regression” problem with a specific kernel.



ASIDE:  KERNEL REGRESSION

 Ubiquitous motivation: function value known at a bunch of points, “interpolate” to 

rest of space

 One way to think of all of ML!

 Suppose K defines “point similarity”  K(x,y)

 Consider interpolation via functions of specific form…



NEURAL NET TRAINING REVISITED



KERNEL IN THE INFINITE WIDTH LIMIT


