THEORY OF MACHINE LEARNING

LECTURE 20

NEURAL NETWORKS -- OPTIMIZATION

NEURAL NETWORKS (DNN)

Definition. A layered "circuit" that takes a vector of input features x, produces output y = $F_r \circ F_{r-1} \circ \cdots \circ F_1(x)$, where each F_i is a function of the form $F_i(z) = 0$ $\sigma(Az+b)$, for some activation function $\sigma()$ (that acts coordinate-wise)

- Common activation functions:
 - Threshold
 - Sigmoid: (continuous approx.) $\frac{1}{1+e^{-x}}$
 - ReLU, Tanh

ontput.

LEARNING NEURAL NETWORKS

R lakel value

- Question (supervised learning): given data $(x_1, y_1), (x_2, y_2), ...$ from some distribution D, find h (with given "architecture") that minimizes the risk
- ERM problem usually called neural network training

- Neural networks can represent/approximate any function (Barron, Cybenko)
- Depth vs width trade-offs
- Choosing network architecture is key (inductive bias)
 - No general rules (heuristics like CNN, transformers, Hebbian learning, ...)

LEARNING NEURAL NETWORKS

Theorem. (see textbook) Given an architecture, it is NP-hard to learn weights, even if classification error is 0 and we just have 3 internal nodes (Threshold...)

Relu,..

- Worst case result clearly not reflective of practice
- Can we obtain more "positive" results? (theoretical)

 Width is large then you can train efficiently; depth 2 + random inputs.
- <u>Common algorithm:</u> gradient descent not too hard to compute gradients (exercise in chain rule)
 - Linear time implementation via "back propagation" (Rumelhart, Hinton, Williams)

Egolog.
Theorem (NP hardners): Given (x, y,), (2,, y2), (2m, ym),
Theorem (NP hardners): Given (2, 4,), (2, 4), (2, 4),, (2m, ym), CR. decide y 3 a network of the foll structure:
decide y ja voltant j
such that h(xi) = y; Yi
Inputs one "aka worst case" Triputs one "aka worst case" Fixing network rige to be "too small", what if dightly higger
July one after worst case
and is ok?
"Model": $n \sim \mathcal{N}(0,1)^n \rightarrow h(x)$ $(x,h(x))$
Unknown [hidden input output behavior to obtain network. "correlations" between y and ni

IS GRADIENT DESCENT (GD) GOOD?

$$L(x_i, y_i), \dots (x_n, y_n)$$

$$L(x_i, \omega) = \sum_{i=1}^{n} L(x_i, \omega)$$

$$+ \delta_i \omega k. \qquad + \omega ks.$$

- Naine GD takes time ~ Nx |W| per iteration Running time? in practive, we divide N'into "batches" & compute grads only using a batch.
- Question: given data $(x_1, y_1), (x_2, y_2), ...,$ does running GD for N iterations result in training error \leftarrow OPT + f(N) [for some decreasing function?]
- Assuming the network architecture allows for zero error, does GD [Anaudhuman et al.]. converge to zero error? (No, becaux of NP-hardness) JN
- Alternatives to GD method of moments (shallow nets), ...
 - [Chen, Klivans, Meka 2020]: in time exp(# internal nodes, depth, other params), can learn what GD can't © FPT.

OVERPARAMETRIZATION

(~2016--)

Question out of desperation: can we show that GD is good in any (width > #inputs) reasonable generality? 'all local opt are dosk to global opt'

Theorem. [Jacot, Gabriel, Hongler 18] [Arora, et al. 2019] A width ~ n^3 network with any number of layers trained via (GD) from random initialization achieves zero training error. (why)

(key idea: parameters don't change much during training if width is so large...)

(point is that GD does it).

- Neural Tangent Kernel.

- Width is memorization

6D-based training in NNS works a kernel method with as appropriately defined kernel. (at least with infinite width).

-) Feature embedding of data points.

 $x \longrightarrow f(x)$ raw data feature embedding.

f(x) should be useful to discoun between classes.

(ii) coordinates of f(x) should be "independent" of one another.

f(x) should be "as informative about 2 as possible.

knowing f(x), there should be able to "recover" x to a certain entent.