THEORY OF MACHINE LEARNING LECTURE 20

NEURAL NETWORKS -- OPTIMIZATION
\rightarrow Project proposal.
\rightarrow HL 3 - ported by tonight.

NEURAL NETWORKS (DNN)

- Definition. A layered "circuit" that takes a vector of input features x, produces output $y=F_{r} \circ F_{r-1} \circ \cdots \circ F_{1}(x)$, where each F_{i} is a function of the form $F_{i}(z)=$ $\sigma(A z+b)$, for some activation function $\sigma()$ (that acts coordinate-wise)
- Common activation functions:
- Threshold

F_{r} has a single output.
- Sigmoid: (continuous approx.) $\frac{1}{1+e^{-x}}$

$\sigma\left(A_{1} x+b\right) \equiv F_{1}$
- ReLU, Tanh
- ...

LEARNING NEURAL NETWORKS

- Question (supervised learning): given data ($\left.\underline{x}_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ from some distribution D, find h (with given "architecture") that minimizes life risk
- ERM problem usually called neural network training

- Neural networks can represent/approximate any function (Barron, Cybenko)
- Depth vs width trade-offs
- Choosing network architecture is key (inductive bias)
- No general rules (heuristics like CNN, transformers, Hebbian learning, ...)
(no "good" general technique).

LEARNING NEURAL NETWORKS

Theorem. (see textbook) Given an architecture, it is NP-hard to learn weights, even if classification error is 0 and we just have 3 internal nodes

- Worst case result - clearly not reflective of practice
- Can we obtain more "positive" results? (theoretical)
\rightarrow Width is large then you can train efficiently; depth $2+$ random inputs.
- Common algorithm: gradient descent - not too hard to compute gradients (exercise in chain rule)
- Linear time implementation via "back propagation" (Rumelhart, Hinton, Williams)
 (storing "vertex gradients") ' 86.

Theorem (NP hardeners): Given $\quad\left(\begin{array}{l}x_{1} \\ \downarrow\end{array}, y_{1}^{\prime}\right),\left(x_{2}, y_{2}\right), \ldots \ldots\left(x_{m}, y_{m}\right)$,
decide if \exists a neturok of the foll structure:
 such that $h\left(x_{i}\right)=y_{i} \quad \forall i$
\rightarrow Inputs are "worst case" what if inputs are

$$
\mathcal{N}(0,1)^{n} ?
$$

\rightarrow Fixing network size to be "too small". \rightarrow what if slightly bigger and is $O K$?
generative.
"Model":

$$
x \sim N(0,1)^{n} \rightarrow h(x) \quad(x, h(x))
$$

Unknown /hidden
input/output behavior to obtain netursh. "correlations" between y and x_{i}

IS GRADIENT DESCENT (GD) GOOD?

$$
L\left(x_{i} \omega\right)=\sum_{i=1}^{\left(x_{1}, y_{1}\right), \ldots{ }_{\sim}^{N}\left(x_{N}, y_{N}\right)} l \underbrace{l\left(x_{i} ; \omega\right)}_{\sim \text { wis }}
$$

- Running time? Naive GD takes time ~ $N \times|W|$ per iteration in proactive, we divide N into "batches" \& compute grads only using a batch.
- Question: given data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, does running GD for N iterations result in training error $<=O P T+f(N)$ [for some decreasing function?]
- Assuming the network architecture allows for zero error, does GD converge to zero error?
(No, because of NP-hordness) $\frac{1}{\sqrt{N}}$
[Anarihermar et al.].
- Alternatives to GD - method of moments (shallow nets), ...
- [Chen, Klivans, Meka 2020]: in time exp(\# internal nodes, depth, other params), can learn what GD cant © FPT.

OVERPARAMETRIZATION

$$
(\sim 2016 \ldots)
$$

- Question out of desperation: can we show that GD is good in any reasonable generality? (width \geqslant \#inputs)
"all local opt are close to global opt" 2
Theorem. [Jacot, Gabriel, Hongler 18] [Arora, et al. 2019] A width ~n^3 network with any number of layers trained via GD from random initialization achieves zero training error.

(key idea: parameters don't change much during training if width is so large...)
(point is that GD does it).
- Neural Tangent Kernel.
\rightarrow Width vs memorization
$\rightarrow G D$-based training in NNS works ~ kernel method with appropriately defined kernel. (at least with infinite width).

FEATURE LEARNING
$N N$ is essentially performing a linear classification in "feature space"

- Problems with the infinite width regime
- What about learning "features" from data?
- What does this even mean?

$N N$ is "embedding" $x \rightarrow$ feature space.
- Traditional approaches: sparse coding \sim auto encoders.

Given some inputs, can we "extract useful features"?
\Rightarrow Contrastive learning.
\rightarrow discriminative interns of predicting class + "ithofonal" to one another.
\rightarrow Manifold learning \rightarrow (every $p+$ defined bor $\sim k \ll N$ parameters)
$\rightarrow \quad$ Feature embedding of data points.

$$
x \longrightarrow f(x)
$$

raw data feature embedding.
(i) $f(x)$ should be useful to discern between classes.
(ii) Coordinates of $f(x)$ should be "independent" of one another.
(iii) $f(x)$ should be "as informative" about x as possible.
knowing $f(x)$, we should be able to "recover" x to a certain extent.

