THEORY OF MACHINE LEARNING LECTURE 19

NEURAL NETWORKS - REPRESENTATION, QRTIMMZATHMN
$\int H$ H3 will be out this weekend. $\quad\{$
\rightarrow Project proposal \rightarrow find a papen you thine is "worth pressetify" as project, write one para abl it.
\rightarrow No lecture this Thursday..

RECAP

- Idea behind neural nets:
- Perceptrons detect "basic" or "primitive" features; 'composing' them allows for complex decision-making
- Supported by human visual system (V1, V2, ...)

RECAP: ARTIFICIAL/DEEP NEURAL NETWORK (DNN)

- Definition. A layered "circuit" that takes a vector of input features x, produces output $y=F_{r} \circ F_{r-1} \circ \cdots \circ F_{1}(x)$, where each F_{i} is a function of the form $F_{i}(z)=$ $\sigma(A z+b)$, for some activation function $\sigma()$ (that acts 'coordinate-wise)
- Common activation functions:
- Threshold
- Sigmoid: (continuous approx.) $\frac{1}{1+e^{-x}}$
- ReLU, Tanh

LEARNING NEURAL NETWORKS

- Defines a hypothesis class
- Question (vanilla supervised learning): given data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ from some distribution D, find h in this class that minimizes the risk
- ERM problem usually called neural network "training" - given data, find best hypothesis ($f\left(x_{i}\right)=y_{i}$) for all i

THEORY OF DEEP LEARNING - THREE BROAD DIRECTIONS
deep neural net.

- Expressibility
- What kinds of functions can be obtained using a DNN? (complexity of functions $\left.\begin{array}{r}\text { no focus on training }\end{array}\right)$.
- Training complexity \& training dynamics for GD and variants
- Can the ERM problem be solved efficiently? What guarantees are possible?
- Generalization (If you get m training examples, can you ensure that test error (assuming same
- What kind of generalization bounds can we prove? (VC dimension?) \# paraus \approx \# data samples..

$$
\begin{array}{r}
\text { dist }) \text { is }<f(m) \\
\frac{1}{\sqrt{m}} ?
\end{array}
$$

Key: "easy" answers for all questions, but unsatisfactory for realistic settings

EXPRESSIBILITY BASICS

- Barron's theorem [93]. Any continuous function f that satisfies an appropriate "niceness" condition (parametrized by C) can be approximated to error ϵ (in L2!) by a 2-layer NN with $\sim \frac{c^{2}}{\epsilon}$ internal nodes
- (Nice functions can be approximated by small ANs)
- Universal approximation [Cybenko, Hornik '87,'91]. Any continuous function (over a compact domain) can be approximated by a 2 -layer NN with any non-linearity (not a polynomial)

Curse of dimensionality for Cybenko (not Barron)

Moral:

$$
\begin{array}{r}
\therefore \text { depth -2 nets are universal (express ANY function - given large } \\
\text { enough width.) }
\end{array}
$$

WHY "DEEP" NETWORKS?

- Practical intuition:

```
high-leved.
```

- Depth allows "meaningful features" while width is for "brute force memorization"
- Universality results degrade rapidly with dimensions
- Curse of dimensionality
- Modern nets work with high dimensional data

- Does higher depth lead to higher expressibility (with much fewer neurons)?
- Yes! [Eldan and Shamir, Telgarsky]

POWER OF DEPTH

Theorem [Telgarsky 16]. There exists a network of depth k^{2} and $O(1)$ width that computes function f, with the property that any network of depth k that approximates f requires width $>2^{k}$
(For more general piecewise poly functions, first bound changes to k^{3})
 with $\sim 2^{k^{2}}$ oscillations.

$\omega>2^{k}$
(1) A function with $\sim 2^{k^{2}}$ oscillations can be output by a depth k^{2} net with 3 neurons/layer.
that is the output of a
(2) Any function width ω, depth $k P$ network is composed of $\leq(2 \omega)^{k}$ piecewise linear "pieces".
(3) Arfunction that with fever than $2^{k^{2} / 2}$ pieces Cannot even approximate fur from (1) to an error $\sim \frac{1}{4}$.

$$
(2 \omega)^{k}>2^{k^{2} / 2} \Rightarrow \omega \gtrsim \frac{2^{k / 2} .}{10}
$$

[Similar results expected for other fin classes.].

MORALS

- Depth allows capturing "complex patterns" (oscillations). different behavior in
Width allows capturing) "different regions of space"

- Mode collapse.
- Very hard question (Neural Architecture Search)
\rightarrow Circuit complexity.
- Example of Vision + NLP problems

2013 - Hebbian principle $\rightarrow 19505$. \rightarrow "Neurons that fire to getter wire together"

- Needs exploiting domain knowledge (physics informed ML)
[Aroma, Ma, Risherki]: deeper networks have a higher "Barron Constant.". (grows exp (d))

NEURAL NETWORK TRAINING

- Supervised learning of NN: given data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ from some distribution D, find $\underset{\sim}{h}$ that minimizes the (empirical is what). - Standard metrics: squared loss, cross entropy $\left(h_{\omega}(x)\right.$ is the output of NN $\left.^{N}\right)$. we cave about find ω, so as to minimize $\sum_{i=1}^{N}\left(h_{\omega}\left(x_{i}\right)-y_{i}\right)^{2}$ output of $N N$ N $\omega \rightarrow$ weights.
- ERM problem for neural nets
- NP-hard to learn weights, even if classification error is 0 and we just have 3 internal nodes
[For the squared loss, ERM problem is NP hand, because h_{ω} is non linear.]. o

COMMON ALGORITHM - GRADIENT DESCENT
\rightarrow Recall hows we solved ERM problems:

$$
\left(x_{1}, y_{1}\right), \ldots, \quad\left(x_{N}, y_{N}\right)
$$

$h(\omega ; x)$: hypothesis defined by "weight vector" ω on input x.
(linear hypotheses, $h^{h}(\omega ; x)=$ waxed $\langle x, \omega\rangle+c$) NW?

*weight "vector" consists of

$$
w=\left(A, v, b, b^{\prime}\right)
$$

In geneal,

$$
F_{1}(x)=\sigma(A x+b)
$$

$y=\sigma\left(v^{\top} F_{1}(x)+b^{\prime}\right)$ model parameters).

ERM: find w so that $\sum_{i=1}^{N} l\left(h\left(w ; x_{i}\right), y_{i}\right)$ is min given training $G(w)$;
data,
\rightarrow If G were convex, gradient desc cent (GDrovably works...
\rightarrow NNs: G is usually (for most choices of σ) not convex.
$\rightarrow G D$ still finds "local opt".
Hope: "with sufficient data, finds a "good" local opt
\&. "Quality" of "local opt" \rightarrow between local $\& g^{\text {coral... }}\left\{\begin{array}{l}\text { "Landscape." } \\ \text { analysis." }\end{array}\right.$ analysis".

* \# of local opt \longrightarrow
* Lots of global opt (or "nearly" global opt), but some generalize

How to do gradient:

$$
\begin{aligned}
& \omega^{(t+1)}=\omega^{(t)}-\eta \nabla G\left(\omega^{(t)}\right) \\
& G=\sum_{i=1}^{N}\left(h\left(\omega ; x_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

For simplicity, assume $G=(h(\omega ; x)-y)^{2}$

$$
\begin{aligned}
h(w ; x) & =\sigma\left(v^{\top}(\sigma(A x+b))+b^{\prime}\right) \\
& =\sigma\left(v_{1} y_{1}+v_{2} y_{2}+\ldots+v_{n} y_{n}+b^{\prime}\right) \\
& =\text { at each exty of } A_{1}
\end{aligned}
$$

$$
\nabla G=2(h(\omega ; x)-y) \nabla h(\omega ; x)
$$

how dues h change if you vary ω ?
Th has components along each entry of A, b, b^{\prime}, v.
$\frac{\partial h}{\partial v_{i}}$ is "essentially" $y_{i}($ if σ were Rel).
$\partial v_{i} y_{\text {one parameter. }}$

$$
\sigma^{\prime}\left(v^{\top}(\ldots) \cdot y_{i}\right.
$$

How do you diff. wot. $A_{i j}$?

$$
\frac{\partial h}{\partial A_{i j}}=\sigma^{\prime}\left(v^{\top}(\ldots)\right) \cdot \frac{\partial y_{j}}{\partial A_{i j}} v_{j}
$$

*. If you have >2 layers

[Hinton etal. '86]
Back propagation algonthnsen \rightarrow allows you to compute gradients in \sim linear time.
[Note on Back-propagation.).

