THEORY OF MACHINE LEARNING

LECTURE 18

NEURAL NETWORKS - REPRESENTATION BASICS

RECAP

- Perceptron, or linear threshold
- Hypotheses of form $\operatorname{sign}(\langle a, x\rangle)$ for an appropriate weight vector a
- Generally, $\sigma\left(a^{T} x\right)$ for some "activation function" σ
- Biologically inspired, arithmetic circuit (with threshold gate)
- Idea behind neural nets:
- Perceptrons detect "basic" or "primitive" features; 'composing' them allows for complex decision-making (can get high level concepts using basic features)
- Supported by human visual system (V1, V2, ...)

RECAP: ARTIFICIAL/DEEP NEURAL NETWORK (DNN)

- Definition. A layered "circuit" that takes a vector of input features x, produces output $y=F_{r} \circ F_{r-1} \circ \cdots \circ F_{1}(x)$, where each F_{i} is a function of the form $F_{i}(z)=$ $\sigma(A z+b)$, for some activation function $\sigma()$ (that acts coordinate-wise)
- Common activation functions:
- Threshold
- Sigmoid: (continuous approx.) $\frac{1}{1+e^{-x}}$
- ReL Tanh
-

depth $=r$.

BASICS
Simar classifiers+.

- Neural networks are basically a (fairly complex) hypothesis class - takes input x, produces y
- Question (vanilla supervised learning): given data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$ from some distribution D, find h in this class that minimizes the risk

$$
\left.\operatorname{risk}(h)=\mathbb{I C} \underset{x \sim D}{\mathbb{E}} \mathbb{1}[h(x) \neq y]_{\text {label } c_{2} \text {) real value } y}^{\sim} \underset{(x, y) \sim D}{\mathbb{E}} \ell \overline{(h}(x), y\right) \text {. }
$$

- ERM problem usually called neural network "training" - given data, find best hypothesis $\left(f\left(x_{i}\right)=y_{i}\right)$ for all i

ERM: Minimize training loss
(using depth, width of network bounded appropriately).

THEORY OF DEEP LEARNING

- Expressibility (how rich is this hypothesis clas??)
- What kinds of functions can be obtained using a DNN? the.
- Training complexity \& training dynamics for GD and variants
- Can the ERM problem be solved efficiently? What guarantees are possible?
- Generalization
- mews.
- What kind of generalization bounds can we prove? (VC dimension?) $\rightarrow \approx$ \#parametur

$$
t \text { news. }
$$

Key: "easy" answers for all questions, but unsatisfactory for realistic settings

EXPRESSIBILITY BASICS

- Barron's theorem [93]. Any continuous function f that satisfies an appropriate "niceness" condition (parametrized by C) can be $\quad \int x|\hat{f}(x)| d x$ approximated to error ϵ (in L2!) by a 2-layer NN with $\sim \frac{C^{2}}{\epsilon}$ internal nodes
- (Nice functions can be approximated by small NNs) (2 Layer)
arotorics
Universal approximation [Cybenko, Hornik '87,'91]. Any continuous
function (over a compact domain) can be approximated by a 2-layer NN
with any non-linearity (not a
"sismoidal" non-lin: \qquad (pointurise)

But wait.. who uses infinitely wide 2 layer nets?
\rightarrow input $\operatorname{dim}=n \Rightarrow$ width weed for "basic" frs is $\sim 2^{n} \cdot(\operatorname{eup}(n))^{0}$, $1 / \varepsilon$,

DEPTH VERSUS WIDTH

- Practical intuition:

- Depth allows "meaningful features" while width is for "bruerfere memorization"
- Universality results degrade rapidly with dimensions (Any fun s in expressible - Curse of dimensionality (width be exp in dimension). Ans. has degth-2
- Modern nets work with high dimensional data
Q. n-dim in pule. $\left(\frac{1}{\varepsilon}\right)^{n}$
- Does higher depth lead to higher expressibility (with much fewer neurons)?
- Bunch of works ... [Eldan and Shamir (depth 2 vs depth 3)], [Telgarsky], 2015-16

\wedge
(fix input dim =1)

$\mathcal{F}_{2}:\left\{\begin{array}{l}f: \begin{array}{l}f \text { is the output } \\ \text { of a depth } 2 \mathrm{NN}\end{array}\end{array}\right.$

Qu: Can any for in F_{1} be approximated to error $\leqslant \in$ using functions in ${ }^{\prime} f_{2}$?

$\rightarrow \frac{\text { CIROUIT LOWER BOUNDS: Look at specific } f \text { of interest, and }}{(b 00 \text { lan) }}$ ask of \exists apcircuit of sine $\leq S$ that computes f ?
[Minsky Pappect '69]: parity function requires "exponential width" [Hästad ' 86]. 4 inputs $\rightarrow 110 \rightarrow 1$ frs: $\{0,1\}^{n} \rightarrow\{0,1\}$.

POWER OF DEPTH

Theorem template. There exists a network of depth D and "size" S that computes some function f that cannot be approximated by the output of any network with depth d and size S^{\prime} (typically if $d \ll D, S^{\prime}$ will be >> S)

- "Depth versus width" results
- Reminiscent of circuit complexity (original work of Minsky, Pappert)
[Telgarsky 16]. For any $k>0$ theorem holds with:

$D=k^{3}$; width $\sim \theta(1)$ sit. approximating with depth k requires $\operatorname{eup}(k)$ width..

PROOF OUTLINE

- Consider just one-dimensional inputs and ReLU activations
- Key insight:
- depth D lets us achieve $\exp (D)$ many "oscillations" in f
- getting so many osciallations with depth d requires huge width!
\checkmark width w and depth $=d$, Hoscillations $\omega^{o(d)}$

Pant 1:
\rightarrow Single variable input x : domain $=[0,1]$

$$
\begin{aligned}
& \sigma: \operatorname{Re} L u: \sigma(x)=\max (0, x) \\
& \sigma(2 x)-\sigma\left(4\left(x-\frac{1}{2}\right)\right)+\sigma(g(x-1))
\end{aligned}
$$

what is ϕ^{\prime}

$$
\rightarrow \quad f(f(x)) ?
$$

$$
\rightarrow \quad f(f(f(x))) \rightarrow
$$

$f^{0(k+1)}(x) \rightarrow 2^{k}$ peaks.
depth $\sim 2 k$ NN with width ≤ 3, you car implement this..

Pout 2: Want to show that if depth $\ll k$, getting this for requires huge width.

Obsn: $\quad{ }^{\text {o }} 0 y_{1}$ is a neuron that is a piecenice lin.

- Idea: pieces
f is piecunise linear $\#$ pieces in f is $\leq\left(n_{1}+n_{2}+\ldots+n_{\omega}\right)^{2}$
\rightarrow Part 3: If f_{1} and f_{2} are pownoren. with m_{p} and m_{2} pieces and $m_{1}<\frac{m_{2}}{2}$; then $\left\|f_{1}-f_{2}\right\|_{1} \geqslant \frac{1}{8}$.

