
THEORY OF MACHINE LEARNING

LECTURE 20

NEURAL NETWORKS -- OPTIMIZATION

NEURAL NETWORKS (DNN)

 Definition. A layered “circuit” that takes a vector of input features x, produces

output y = 𝐹𝑟 ∘ 𝐹𝑟−1 ∘ ⋯ ∘ 𝐹1(𝑥), where each 𝐹𝑖 is a function of the form 𝐹𝑖 𝑧 =

𝜎(𝐴𝑧 + 𝑏), for some activation function 𝜎() (that acts coordinate-wise)

 Common activation functions:

 Threshold

 Sigmoid: (continuous approx.)
1

1+𝑒−𝑥

 ReLU, Tanh

 …

LEARNING NEURAL NETWORKS

 Question (supervised learning): given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … from some

distribution D, find h (with given “architecture”) that minimizes the risk

 ERM problem usually called neural network training

 Neural networks can represent/approximate any function

(Barron, Cybenko)

 Depth vs width trade-offs

 Choosing network architecture is key (inductive bias)

 No general rules (heuristics like CNN, transformers, Hebbian learning, …)

LEARNING NEURAL NETWORKS

Theorem. (see textbook) Given an architecture, it is NP-hard to learn

weights, even if classification error is 0 and we just have 3 internal nodes

- Worst case result – clearly not reflective of practice

- Can we obtain more “positive” results?

- Common algorithm: gradient descent – not too hard to compute gradients

(exercise in chain rule)

- Linear time implementation via “back propagation” (Rumelhart, Hinton, Williams)

IS GRADIENT DESCENT (GD) GOOD?

 Running time?

 Question: given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , …, does running GD for N iterations

result in training error <= OPT + f(N) [for some decreasing function?]

 Assuming the network architecture allows for zero error, does GD

converge to zero error?

 Alternatives to GD – method of moments (shallow nets), ...

 [Chen, Klivans, Meka 2020]: in time exp(# internal nodes, depth, other params),

can learn what GD can’t ☺

OVERPARAMETRIZATION

 Question out of desperation: can we show that GD is good in any

reasonable generality?

Theorem. [Jacot, Gabriel, Hongler 18] [Arora, et al. 2019] A width ~ n^3

network with any number of layers trained via GD from random

initialization achieves zero training error.

(key idea: parameters don’t change much during training if width is so

large...)

FEATURE LEARNING

- Problems with the infinite width regime

- What about learning “features” from data?

- What does this even mean?

- Traditional approaches: sparse coding

