THEORY OF MACHINE LEARNING

LECTURE 20

NEURAL NETWORKS -- OPTIMIZATION

NEURAL NETWORKS (DNN)

■ **Definition**. A layered "circuit" that takes a vector of input features x, produces output $y = F_r \circ F_{r-1} \circ \cdots \circ F_1(x)$, where each F_i is a function of the form $F_i(z) = \sigma(Az + b)$, for some activation function $\sigma()$ (that acts coordinate-wise)

- Common activation functions:
 - Threshold
 - Sigmoid: (continuous approx.) $\frac{1}{1+e^{-x}}$
 - ReLU, Tanh
 - ...

LEARNING NEURAL NETWORKS

- Question (supervised learning): given data $(x_1, y_1), (x_2, y_2), ...$ from some distribution D, find h (with given "architecture") that minimizes the risk
- ERM problem usually called neural network training

- Neural networks can represent/approximate any function (Barron, Cybenko)
- Depth vs width trade-offs
- Choosing network architecture is key (inductive bias)
 - No general rules (heuristics like CNN, transformers, Hebbian learning, ...)

LEARNING NEURAL NETWORKS

Theorem. (see textbook) Given an architecture, it is NP-hard to learn weights, even if classification error is 0 and we just have 3 internal nodes

- Worst case result clearly not reflective of practice
- Can we obtain more "positive" results?

- <u>Common algorithm:</u> gradient descent not too hard to compute gradients (exercise in chain rule)
 - Linear time implementation via "back propagation" (Rumelhart, Hinton, Williams)

IS GRADIENT DESCENT (GD) GOOD?

Running time?

- Question: given data $(x_1, y_1), (x_2, y_2), ...,$ does running GD for N iterations result in training error <= OPT + f(N) [for some decreasing function?]
- Assuming the network architecture allows for zero error, does GD converge to zero error?

- Alternatives to GD method of moments (shallow nets), ...
 - [Chen, Klivans, Meka 2020]: in time exp(# internal nodes, depth, other params), can learn what GD can't ☺

OVERPARAMETRIZATION

• Question out of desperation: can we show that GD is good in any reasonable generality?

Theorem. [Jacot, Gabriel, Hongler 18] [Arora, et al. 2019] A width ~ n^3 network with any number of layers trained via GD from random initialization achieves zero training error.

(<u>key idea</u>: parameters don't change much during training if width is so large...)

FEATURE LEARNING

- Problems with the infinite width regime
- What about learning "features" from data?
 - What does this even mean?

- Traditional approaches: sparse coding