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NEURAL NETWORKS – REPRESENTATION, OPTIMIZATION



RECAP

 Idea behind neural nets: 

 Perceptrons detect “basic” or “primitive” features; ‘composing’ them allows for 
complex decision-making

 Supported by human visual system (V1, V2, …)



RECAP: ARTIFICIAL/DEEP NEURAL NETWORK (DNN)

 Definition. A layered “circuit” that takes a vector of input features x, produces 

output y = 𝐹𝑟 ∘ 𝐹𝑟−1 ∘ ⋯ ∘ 𝐹1(𝑥), where each 𝐹𝑖 is a function of the form 𝐹𝑖 𝑧 =

𝜎(𝐴𝑧 + 𝑏), for some activation function 𝜎() (that acts coordinate-wise)

 Common activation functions:

 Threshold

 Sigmoid: (continuous approx.) 
1

1+𝑒−𝑥

 ReLU, Tanh

 … 



LEARNING NEURAL NETWORKS

 Defines a hypothesis class

 Question (vanilla supervised learning): given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , …

from some distribution D, find h in this class that minimizes the risk 

 ERM problem usually called neural network “training” – given data, find 

best hypothesis (𝑓 𝑥𝑖 = 𝑦𝑖) for all i



THEORY OF DEEP LEARNING – THREE BROAD DIRECTIONS

 Expressibility

 What kinds of functions can be obtained using a DNN?

 Training complexity & training dynamics for GD and variants

 Can the ERM problem be solved efficiently? What guarantees are possible?

 Generalization

 What kind of generalization bounds can we prove? (VC dimension?)

Key: “easy” answers for all questions, but unsatisfactory for realistic 

settings



EXPRESSIBILITY BASICS

 Barron’s theorem [93]. Any continuous function f that satisfies an 

appropriate “niceness” condition (parametrized by C) can be 

approximated to error 𝜖 (in L2!) by a 2-layer NN with ~ 
𝐶2

𝜖
internal nodes

 (Nice functions can be approximated by small NNs)

 Universal approximation [Cybenko, Hornik ‘87,’91]. Any continuous 

function (over a compact domain) can be approximated by a 2-layer NN 

with any non-linearity (not a polynomial)

Curse of dimensionality for Cybenko (not Barron)



WHY “DEEP” NETWORKS?

 Practical intuition:

 Depth allows “meaningful features” while width is for “brute force memorization”

 Universality results degrade rapidly with dimensions

 Curse of dimensionality

 Modern nets work with high dimensional data

 Does higher depth lead to higher expressibility (with much fewer 

neurons)?

 Yes! [Eldan and Shamir, Telgarsky]



POWER OF DEPTH

Theorem [Telgarsky 16]. There exists a network of depth k2 and O(1) 

width that computes function f, with the property that any network of

depth k that approximates f requires width > 2k

(For more general piecewise poly functions, first bound changes to k3)



MORALS

 Depth allows capturing “complex patterns”

 Width allows capturing “different regions of space”

 What is the right network for an application? 

 Very hard question (Neural Architecture Search)

 Example of Vision + NLP problems

 Hebbian principle

 Needs exploiting domain knowledge (physics informed ML)



NEURAL NETWORK TRAINING

 Supervised learning of NN: given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … from some 

distribution D, find h that minimizes the empirical risk

 Standard metrics: squared loss, cross entropy 

 ERM problem for neural nets

 NP hard to learn weights, even if classification error is 0 and we just 

have 3 internal nodes



COMMON ALGORITHM – GRADIENT DESCENT


