
THEORY OF MACHINE LEARNING

LECTURE 18

NEURAL NETWORKS – REPRESENTATION BASICS



RECAP

 Perceptron, or linear threshold

 Hypotheses of form sign( 𝑎, 𝑥 ) for an appropriate weight vector a

 Generally, 𝜎(𝑎𝑇𝑥) for some “activation function” 𝜎

 Biologically inspired, arithmetic circuit (with threshold gate)

 Idea behind neural nets: 

 Perceptrons detect “basic” or “primitive” features; ‘composing’ them allows for 
complex decision-making

 Supported by human visual system (V1, V2, …)



RECAP: ARTIFICIAL/DEEP NEURAL NETWORK (DNN)

 Definition. A layered “circuit” that takes a vector of input features x, produces 

output y = 𝐹𝑟 ∘ 𝐹𝑟−1 ∘ ⋯ ∘ 𝐹1(𝑥), where each 𝐹𝑖 is a function of the form 𝐹𝑖 𝑧 =

𝜎(𝐴𝑧 + 𝑏), for some activation function 𝜎() (that acts coordinate-wise)

 Common activation functions:

 Threshold

 Sigmoid: (continuous approx.) 
1

1+𝑒−𝑥

 ReLU, Tanh

 … 



BASICS

 Neural networks are basically a (fairly complex) hypothesis class – takes 

input x, produces y

 Question (vanilla supervised learning): given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , …

from some distribution D, find h in this class that minimizes the risk 

 ERM problem usually called neural network “training” – given data, find 

best hypothesis (𝑓 𝑥𝑖 = 𝑦𝑖) for all i



THEORY OF DEEP LEARNING 

 Expressibility

 What kinds of functions can be obtained using a DNN?

 Training complexity & training dynamics for GD and variants

 Can the ERM problem be solved efficiently? What guarantees are possible?

 Generalization

 What kind of generalization bounds can we prove? (VC dimension?)

Key: “easy” answers for all questions, but unsatisfactory for realistic 

settings



EXPRESSIBILITY BASICS

 Barron’s theorem [93]. Any continuous function f that satisfies an 

appropriate “niceness” condition (parametrized by C) can be 

approximated to error 𝜖 (in L2!) by a 2-layer NN with ~ 
𝐶2

𝜖
internal nodes

 (Nice functions can be approximated by small NNs)

 Universal approximation [Cybenko, Hornik ‘87,’91]. Any continuous 

function (over a compact domain) can be approximated by a 2-layer NN 

with any non-linearity (not a polynomial)

But wait.. who uses infinitely wide 2 layer nets?



DEPTH VERSUS WIDTH

 Practical intuition:

 Depth allows “meaningful features” while width is for “brute force memorization”

 Universality results degrade rapidly with dimensions

 Curse of dimensionality

 Modern nets work with high dimensional data

 Does higher depth lead to higher expressibility (with much fewer 

neurons)?

 Bunch of works … [Eldan and Shamir (depth 2 vs depth 3)], [Telgarsky], 

2015-16



POWER OF DEPTH

Theorem template. There exists a network of depth D and “size” S that 

computes some function f that cannot be approximated by the output of 

any network with depth d and size S’   (typically if d << D, S’ will be >> S)

 “Depth versus width” results

 Reminiscent of circuit complexity (original work of Minsky, Pappert)

[Telgarsky 16].  For any k>0, theorem holds with:

D = S ~ k^3, d = k, and S’ = 2^k   (and ReLU activations)



PROOF OUTLINE

 Consider just one-dimensional inputs and ReLU activations

 Key insight:

 depth D lets us achieve exp(D) many “osciallations” in f

 getting so many osciallations with depth d requires huge width!


