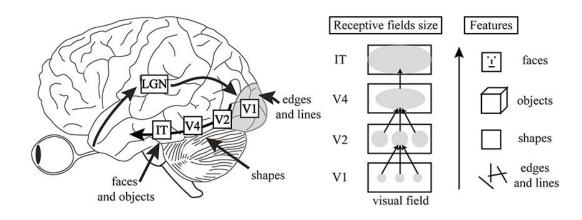
THEORY OF MACHINE LEARNING

LECTURE 18

NEURAL NETWORKS - REPRESENTATION BASICS

RECAP

- Perceptron, or linear threshold
 - Hypotheses of form $sign(\langle a, x \rangle)$ for an appropriate weight vector a
 - Generally, $\sigma(a^Tx)$ for some "activation function" σ
- Biologically inspired, arithmetic circuit (with threshold gate)
- Idea behind neural nets:
 - Perceptrons detect "basic" or "primitive" features; 'composing' them allows for complex decision-making
 - Supported by human visual system (V1, V2, ...)



RECAP: ARTIFICIAL/DEEP NEURAL NETWORK (DNN)

Definition. A layered "circuit" that takes a vector of input features x, produces output $y = F_r \circ F_{r-1} \circ \cdots \circ F_1(x)$, where each F_i is a function of the form $F_i(z) = \sigma(Az + b)$, for some activation function $\sigma()$ (that acts coordinate-wise)

- Common activation functions:
 - Threshold
 - Sigmoid: (continuous approx.) $\frac{1}{1+e^{-x}}$
 - ReLU, Tanh
 - **...**

BASICS

- Neural networks are basically a (fairly complex) hypothesis class takes input x, produces y
- Question (vanilla supervised learning): given data $(x_1, y_1), (x_2, y_2), ...$ from some distribution D, find h in this class that minimizes the risk

ERM problem usually called neural network "training" - given data, find best hypothesis $(f(x_i) = y_i)$ for all i

THEORY OF DEEP LEARNING

- Expressibility
 - What kinds of functions can be obtained using a DNN?
- Training complexity & training dynamics for GD and variants
 - Can the ERM problem be solved efficiently? What guarantees are possible?
- Generalization
 - What kind of generalization bounds can we prove? (VC dimension?)

Key: "easy" answers for all questions, but unsatisfactory for realistic settings

EXPRESSIBILITY BASICS

- Barron's theorem [93]. Any continuous function f that satisfies an appropriate "niceness" condition (parametrized by C) can be approximated to error ϵ (in L2!) by a 2-layer NN with $\sim \frac{C^2}{\epsilon}$ internal nodes
- (Nice functions can be approximated by small NNs)
- Universal approximation [Cybenko, Hornik '87,'91]. Any continuous function (over a compact domain) can be approximated by a 2-layer NN with any non-linearity (not a polynomial)

But wait.. who uses infinitely wide 2 layer nets?

DEPTH VERSUS WIDTH

- Practical intuition:
 - Depth allows "meaningful features" while width is for "brute force memorization"
- Universality results degrade rapidly with dimensions
 - Curse of dimensionality
 - Modern nets work with high dimensional data
- Does higher depth lead to higher expressibility (with much fewer neurons)?
- Bunch of works ... [Eldan and Shamir (depth 2 vs depth 3)], [Telgarsky],
 2015-16

POWER OF DEPTH

Theorem template. There exists a network of depth D and "size" S that computes some function f that cannot be approximated by the output of any network with depth d and size S' (typically if d << D, S' will be >> S)

- "Depth versus width" results
- Reminiscent of circuit complexity (original work of Minsky, Pappert)

[Telgarsky 16]. For any k>0, theorem holds with:

 $D = S \sim k^3$, d = k, and $S' = 2^k$ (and ReLU activations)

PROOF OUTLINE

- Consider just one-dimensional inputs and ReLU activations
- Key insight:
 - depth D lets us achieve exp(D) many "osciallations" in f
 - getting so many osciallations with depth d requires huge width!