
THEORY OF MACHINE LEARNING

LECTURE 18

NEURAL NETWORKS – REPRESENTATION BASICS



RECAP

 Perceptron, or linear threshold

 Hypotheses of form sign( 𝑎, 𝑥 ) for an appropriate weight vector a

 Generally, 𝜎(𝑎𝑇𝑥) for some “activation function” 𝜎

 Biologically inspired, arithmetic circuit (with threshold gate)

 Idea behind neural nets: 

 Perceptrons detect “basic” or “primitive” features; ‘composing’ them allows for 
complex decision-making

 Supported by human visual system (V1, V2, …)



RECAP: ARTIFICIAL/DEEP NEURAL NETWORK (DNN)

 Definition. A layered “circuit” that takes a vector of input features x, produces 

output y = 𝐹𝑟 ∘ 𝐹𝑟−1 ∘ ⋯ ∘ 𝐹1(𝑥), where each 𝐹𝑖 is a function of the form 𝐹𝑖 𝑧 =

𝜎(𝐴𝑧 + 𝑏), for some activation function 𝜎() (that acts coordinate-wise)

 Common activation functions:

 Threshold

 Sigmoid: (continuous approx.) 
1

1+𝑒−𝑥

 ReLU, Tanh

 … 



BASICS

 Neural networks are basically a (fairly complex) hypothesis class – takes 

input x, produces y

 Question (vanilla supervised learning): given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , …

from some distribution D, find h in this class that minimizes the risk 

 ERM problem usually called neural network “training” – given data, find 

best hypothesis (𝑓 𝑥𝑖 = 𝑦𝑖) for all i



THEORY OF DEEP LEARNING 

 Expressibility

 What kinds of functions can be obtained using a DNN?

 Training complexity & training dynamics for GD and variants

 Can the ERM problem be solved efficiently? What guarantees are possible?

 Generalization

 What kind of generalization bounds can we prove? (VC dimension?)

Key: “easy” answers for all questions, but unsatisfactory for realistic 

settings



EXPRESSIBILITY BASICS

 Barron’s theorem [93]. Any continuous function f that satisfies an 

appropriate “niceness” condition (parametrized by C) can be 

approximated to error 𝜖 (in L2!) by a 2-layer NN with ~ 
𝐶2

𝜖
internal nodes

 (Nice functions can be approximated by small NNs)

 Universal approximation [Cybenko, Hornik ‘87,’91]. Any continuous 

function (over a compact domain) can be approximated by a 2-layer NN 

with any non-linearity (not a polynomial)

But wait.. who uses infinitely wide 2 layer nets?



DEPTH VERSUS WIDTH

 Practical intuition:

 Depth allows “meaningful features” while width is for “brute force memorization”

 Universality results degrade rapidly with dimensions

 Curse of dimensionality

 Modern nets work with high dimensional data

 Does higher depth lead to higher expressibility (with much fewer 

neurons)?

 Bunch of works … [Eldan and Shamir (depth 2 vs depth 3)], [Telgarsky], 

2015-16



POWER OF DEPTH

Theorem template. There exists a network of depth D and “size” S that 

computes some function f that cannot be approximated by the output of 

any network with depth d and size S’   (typically if d << D, S’ will be >> S)

 “Depth versus width” results

 Reminiscent of circuit complexity (original work of Minsky, Pappert)

[Telgarsky 16].  For any k>0, theorem holds with:

D = S ~ k^3, d = k, and S’ = 2^k   (and ReLU activations)



PROOF OUTLINE

 Consider just one-dimensional inputs and ReLU activations

 Key insight:

 depth D lets us achieve exp(D) many “osciallations” in f

 getting so many osciallations with depth d requires huge width!


