
THEORY OF MACHINE LEARNING

LECTURE 17

NEURAL NETWORKS - INTRODUCTION



REVIEW OF OPTIMIZATION

 Convex optimization (minimizing convex function over convex domain)

 Local min = global min  (false for non-convex – only local min “tractable”)

 Gradient descent

 Any Lipschitz function –
1

𝑇
error after T iterations

 Improved bounds for smooth functions (1/T) and strongly convex exp(-T)

(extends to Polyak-Lojasiewicz)

 Generic analysis technique – maintain a potential function 𝑥𝑡 − 𝑥∗
2

or Fn value



IMPROVEMENTS, GENERALIZATIONS

 Nesterov’s method for smooth functions (gets 
1

𝑇2
convergence)

 Polyak’s “heavy ball” method (momentum)

 Originally designed for strongly convex functions – achieves 𝜅 in exponent

 Second order methods, first order “proxies” (AdaGrad)

 Theme: avoid “slow” convergence – take large steps when possible

 Non-convex functions – “slip out” of local minima

 Perturbed gradient descent -- if you’re not moving much via gradient descent, 

just make a “random jump” to a point in a neighborhood 

 Last lecture: regularization, “stability” and generalization



NEURAL NETWORKS



BASICS 

 Recall linear threshold functions (hyperplanes)

 Earliest neural net – perceptron

 “Activation function”  -- biologically inspired

 Natural view as a (logic) circuit



BASICS 

 Can view output as detecting some “basic feature” in data

 What if we want to use a “composition” of features?

 E.g., we have linear classifiers for basic shapes; complex shapes expressible as 

different combinations of basic ones

 (Also biologically inspired)



BASICS (“ARTIFICIAL”/DEEP NEURAL NETWORK)

 Definition. A layered “circuit” that takes a vector of input features x, produces 

output y = 𝐹𝑟 ∘ 𝐹𝑟−1 ∘ ⋯ ∘ 𝐹1(𝑥), where each 𝐹𝑖 is a function of the form 𝐹𝑖 𝑧 =

𝜎(𝐴𝑧 + 𝑏), for some activation function 𝜎() (that acts coordinate-wise)

 Common activation functions:

 Threshold

 Sigmoid: (continuous approx.) 
1

1+𝑒−𝑥

 ReLU, Tanh

 … 



BASIC GOAL

 Neural networks are basically a (fairly complex) hypothesis class – takes 

input x, produces y

 Question (vanilla supervised learning): given data 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , …

from some distribution D, find h in this class that minimizes the risk 

 ERM problem usually called neural network “training” – given data, find 

best fit classifier

 Non-convex optimization problem, NP-hard even in very simple cases

 Works surprisingly well in practice!



THEORY OF DEEP LEARNING

 Expressibility (inductive bias, etc.)

 Training complexity & training dynamics for GD and variants

 Generalization

Key: worst case answers are easy; challenging to answer questions about 

“realistic” settings


