THEORY OF MACHINE LEARNING

LECTURE 16

REGULARIZATION, STABILITY

SUMMARY OF GRADIENT DESCENT

- Convergence with error $O(\frac{1}{\sqrt{T}})$ after T steps for any L-Lipschitz function
- Noisy gradient oracle" → stochastic gradient descent
- Error of O(1/T) for "smooth" convex functions (derivative is M-Lipschitz), assuming step size $<\frac{1}{2M}$
- If function is also strongly convex with parameter μ , convergence bound improves to roughly $\exp(-\frac{\mu}{M}T)$ (extends to Polyak-Lojasiewicz)
- Nesterov's "acceleration", <u>preconditioning</u> via the Hessian, or by using first order proxies (AdaGrad), momentum

IMPROVEMENTS, GENERALIZATIONS

$$\exp\left(-\frac{\omega_{t}}{\omega_{t}}\right) \qquad \exp\left(-\frac{\omega_{t}}{\omega_{t}}\right) \qquad \exp\left(-$$

- Second order methods, first order "proxies" (AdaGrad)
- Theme: avoid "slow" convergence take large steps when possible
 - Non-convex functions "slip out" of local minima

Can prove formally that you get out of "bad saddles" [Chi Jin, Rong Ge, M. Jordan

You end up at "approximately"

Ve to local minima.

MANY VARIANTS OF GD

"Oh sure, going in that direction will totally minimize the objective function" —Sarcastic Gradient Descent.

CHOOSING LOSS FUNCTIONS

earlier: binary logistic

- Utility versus niceness
- dadaset (x_1, y_1) , (x_2, y_2) ..., (x_m, y_m) $L_{0SS}(\omega) = \left(\frac{1}{m} \cdot \sum_{i=1}^{m} L(\omega, x_i, y_i) \right)$

- Today's topic
 - "Nice" loss functions come with added benefit: ("stability" to input changes
 - Example of quadratic
 - Stability is a form of "simplicity" => generalization

- Common Regularigers: - le regulari ges.
- entropy meg

 $\chi'(\omega, \chi_i, \gamma_i') = 1 + 0 \|\omega\|^2$

- log-barrier.
- "Self-concordant" for

Y OF A LOSS MINIMIZATION ALGORITHM

(deterministic training procedures).

• Given examples
$$(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$$
, do loss minimization
$$L(\omega) = \begin{pmatrix} \frac{1}{m} & \sum_{i=1}^{m} L(\omega_i, x_i, y_i) & \longrightarrow \text{ argmin } L(\omega) = \omega^* \end{pmatrix}$$

Can be viewed as map from examples -> parameters w

$$S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$$
 $\longrightarrow \omega^*(S)$

• How does changing a single (x_i, y_i) change the $\sqrt[n]{2}$

$$S' = \left\{ (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m), (x_m, y_m) \right\} \rightarrow \omega^*(S')$$

 $U' = \left\{ (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m), (x_m, y_m) \right\} \rightarrow \omega^*(S')$

 $U' = \left\{ (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m), (x_m, y_m) \right\} \rightarrow \omega^*(S')$

 $U' = \left\{ (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m), (x_m, y_m) \right\} \rightarrow \omega^*(S')$

$$\frac{\|\omega^*(s') - \omega^*(s)\| \leq \delta(m)}{\|\omega^*(s') - \omega^*(s)\| \leq \frac{1}{m}}$$

UNDERSTANDING STABILITY -- LINEAR FUNCTIONS

- Suppose we are optimizing over $w \in [-1,1]$
- Consider sequence of functions:

$$L(\omega) = \frac{1}{m} \cdot \sum_{i=1}^{m} l_{i}(\omega)$$

argmin $L(\omega) = \begin{cases} -1 & \text{if } m \text{ is odd} \end{cases}$

Theorem: Suppose $\lfloor (\omega)$ is α -strongly convex and we replace $l(\omega)$ with $l'(\omega)$, such that $\|\nabla(l'_i - l_i)\| \le G$, say. Then $\|\omega^*(S') - \omega^*(S)\| \le G$

In general, changing one of the li's can highificall I change the w.

STABILITY IMPLIES GENERALIZATION

- Suppose our loss for
$$l(w; x)$$
 is $s(m)$ -stable; then generalization error is $\leq l(m)$.

- Recall the notion of "generalization gap"
 - Can we phrase it in terms of stability?

data
$$x_1, x_2, \dots, x_m, x_m$$
 $S = x_1, x_2, \dots, x_m, x_m$
 $S' = x_1, x_2, \dots, x_m$

Generalization:

(data in from district)

 $S = x_1, x_2, \dots, x_m$
 $S = x_1, x_2, \dots, x_m$

Regularization:

(2) Improves rate of Convergence. high error before neg.).

CONCENTRATION BOUNDS AND STABILITY

[Talagrand '80s], [Boucheron, Lugosi, Massart], [Efron-Stein 60s]