THEORY OF MACHINE LEARNING

LECTURE 16

REGULARIZATION, STABILITY

SUMMARY OF GRADIENT DESCENT

- Convergence with error $O\left(\frac{1}{\sqrt{T}}\right)$ after T steps for any L-Lipschitz function
- "Noisy gradient oracle" \rightarrow stochastic gradient descent
- Error of $O(1 / T)$ for "smooth" convex functions (derivative is M Lipschitz), assuming step size $<\frac{1}{2 M}$
- If function is also strongly convex with parameter μ, convergence bound improves to roughly $\exp \left(-\frac{\mu}{M} T\right)$ (extends to Polyak-Lojasiewicz)
- Nesterov's "acceleration", preconditioning via the Hessian, or by using first order proxies (AdaGrad), momentum

IMPROVEMENTS, GENERALIZATIONS

$$
\exp \left(-\frac{1 / k}{M} \cdot T\right) \quad \omega_{t+1}=\omega_{t}-\gamma\left(\nabla f\left(\omega_{t}\right)\right. \text {. }
$$

- Polyak's("heavy ball" method (momentum) $\exp \left(-\frac{1}{\operatorname{L}} \cdot T\right)-\delta\left(\omega_{t}-\omega_{t+1}\right)$

1960 .
Polyak's "heavy ball" method (momentum) $\quad \exp \left(-\frac{1}{\sqrt{k}} \frac{1}{\sqrt{k}} \cdot T\right)$

- Originally designed for strongly convex functions - achieves $\sqrt{\kappa}$ in exponent
- Second order methods, first order "proxies" (AdaGrad)
- Theme: avoid "slow" convergence - take large steps when possible
- Non-convex functions - "slip out" of local minima

$\left\{\begin{array}{l}\text { - Perturbed gradient descent -- if you're not moving much via gradient descent, } \\ \text { just make a "random jump" to a point in a neighborhood } \\ \text { ". Can prove formally that you get out of "bad saddles" [Chi Sin, Kong Ge, M.Jordau }\end{array}\right.$

you end up at "approximately" $\nabla^{2} f$. $\%$.

MANY VARIANTS OF GD

"Oh sure, going in that direction will totally minimize the objective function" -Sarcastic Gradient Descent.

CHOOSING LOSS FUNCTIONS
earlier: binary \rightarrow logistic $\overline{(H \omega)}$ loss \rightarrow loos.

- Saw that "smoother" loss functions lead to "faster" optimization

Utility versus niceness
(Fit)

- Today's topic

$$
\begin{array}{r}
\operatorname{dadaset}\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots,\left(x_{m}, y_{m}\right) \\
\operatorname{Los}(\omega)=\left(\sum_{i=1}^{m} l\left(\omega, x_{i}, y_{i}\right)\right)+\left(\theta\|\omega\|^{2}\right. \\
l^{\prime}\left(\omega, x_{i}, y_{i}^{\prime}\right)=l+\theta\|\omega\|^{2} .
\end{array}
$$

- "Nice" loss functions come with added benefit: "stability" in o input changes
- Example of quadratic
- Stability is a form of "simplicity" => generalization (Stability \Leftrightarrow Consultation).

Common
$\underset{\text { Regularizes: : }}{\substack{\text { regular } \\ \text { zs. }}}$

- entropy. res.
- Log-barrier.
"Self-concordant" frs.

STABILITY OF A LOSS MINIMIZATION ALGORITHM
(deterministic training procedures)

- Given examples $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m} y_{m}\right)$, do loss minimization

$$
\underline{L(\omega)}=\frac{1}{m} \cdot \sum_{i=1}^{m} \ell\left(\omega ; x_{i}, y_{i}\right) \longrightarrow \underset{\omega}{\operatorname{argmin}} \neq(\omega)=\omega^{*}
$$

- Can be viewed as map from examples \rightarrow parameters w

$$
S=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots,\left(x_{m}, y_{m}\right)\right\} \longrightarrow \omega^{*}(S)
$$

- How does changing a single $\left(x_{i}, y_{i}\right)$ change the w?

$$
S^{\prime}=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{m-1} y_{m-1}\right),\left(x_{m}^{\prime}, y_{m}^{\prime}\right)\right\} \rightarrow \omega^{*}\left(S^{\prime}\right)
$$

*. Loss function is $\delta^{(m)}-$ stable (for training sets of size m) if $\forall x, y^{x^{\prime}, m^{\prime} y^{\prime} y^{\prime} \text { a hove, } \text {, }}$

$$
\begin{aligned}
& \left\|\omega^{*}\left(s^{\prime}\right)-\omega^{*}(s)\right\| \leq \delta(m) \\
& \left|L\left(\omega^{*}\left(s^{\prime}\right)\right)-L\left(w^{*}(m)\right)\right| \leq \frac{1}{m}
\end{aligned}
$$

- Suppose we are optimizing over $w \in[-1,1]$
- Consider sequence of functions:

In general, changing one of the l_{i} 's can rigurifalty change the ω^{*}. $\underset{\omega}{\operatorname{argmin}} L(\omega)=\left\{\begin{array}{rll}-1 & \text { if } m & \text { is even } \\ 1 & \text { y } m & \text { is odd. }\end{array}\right.$
Theorem.
Suppose $L(\omega)$ is α-strongly convene and we replace $l_{i}(\omega)$ with $l_{i}^{\prime}(\omega)$ e such that $\left\|\mathbb{V}\left(l_{i}^{\prime}-l_{i}\right)\right\| \leq G$, say. Then $\left|\omega^{*}\left(S^{\prime}\right)-\omega^{*}(s)\right| \leq \frac{G}{m \alpha}$

STABILITY IMPLIES GENERALIZATION

- Suppose our loss for $\ell(\omega ; x)$ is $\delta(m)$-stable; then generalization error is $\leq \delta(m)$.
- Recall the notion of "generalization gap"
- Can we phrase it in terms of stability?

$$
\begin{array}{lllll}
\begin{array}{llll}
\text { data } \\
S
\end{array} & x_{1} & x_{2} & \cdots & x_{m+1}
\end{array} x_{m} \quad \longrightarrow \quad \omega^{*}(S)
$$

Generalization:
(data iffom distr D) |Loss on test -Loss on training|
$(I) \equiv \underset{i \sim[m]}{\mathbb{E}} l\left(\omega^{*}(S), x_{i}\right) \approx \mathbb{E} \mathbb{E} \ell\left(\omega^{\prime} i \sim[m]\left(S \backslash x_{i}+x_{i}^{\prime}\right), x_{i}\right)$

Regularization:
(1) Improves generalization gap. ("fake win" sometimes,
(2) Improves rate of convergence. because you might have

CONCENTRATION BOUNDS AND STABILITY

- [Talagrand '80s], [Boucheron, Lugosi, Massart], [Efron-Stein 60s]

Chernoff:

$$
\text { e } \operatorname{Pr}\left[\left|\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)-\mu\right|>t\right] \leq e^{-t^{2} n /(a-b)^{2}}
$$

$$
\frac{|a-b|}{n}
$$

Talagrand: Let f be any fon which is δ-stable, \bar{u},

$$
\left|f\left(x_{1}, x_{2}, \ldots x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, x_{i+1}, \ldots x_{n}\right)\right| \leq \delta .
$$

Then if x_{1}, \ldots, x_{n} are iid v.v.s; then

$$
\begin{aligned}
& X_{n} \text { are iid v.v.s; then } \\
& \operatorname{Pr}\left[\mid f\left(x_{1}, \ldots, x_{n}\right)-\text { median } \mid \geqslant t\right] \leq e^{-t^{2} / / 2 \delta^{2}}
\end{aligned}
$$

