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Abstract

In this lecture we discuss about the Noisy Gradient Descent, Analysis
of Gradient Descent for convex smooth functions and Non convex smooth
functions.

1 Noisy Gradient Descent

Let’s consider a setting where we cannot evaluate the gradient of the function
at a given point. Here the gradient descent will be preformed using an oracle
called Noisy gradient oracle. The oracle provides g(w) called noisy gradient,
with the properties such that, the expected value of the g(w) is equal to the
gradient:

E[g(w)] = ∇ f (w)

E[|g(w)|2] ≤ L2

With the above properties of g(w), the convergence guarantees also holds good
for noisy gradient.

Application: One of the applications of Noisy gradient descent is it is used
in the field of federated learning, which is a machine learning technique that
trains an algorithm across multiple decentralized servers holding local data
samples, without exchanging them. Here the servers might not want to dis-
close the actual data but might provide a noisy gradient updates of the data.

2 Smoothness

The definition of smoothness relies on the notion of the gradient. Lets recall
that the gradient of a differentiable function f : RD − > R at w, denoted
∇ f (w), is the vector of partial derivatives of f.

Smoothness: A differentiable function f: Rd − > R is M-smooth if its gradient
is M-Lipschitz. i.e for all x, y we have,

||∇ f (x)−∇ f (y)|| ≤ M||x − y||

this is equivalent to

||∇2 f (x)||2 <= M
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2. Smoothness

In smooth functions the gradient doesn’t suddenly shift. Another consequence
of the smoothness is that the function can always be bounded by a parabola
i.e. from the above definition of smoothness, if the function is M-smooth, we
can write

f (y) ≤ f (x)+ < ∇ f (x), y − x > +M||y − x||2 − > Eq(1)

we know that, the update step of gradient descent is

wt+1 = wt − η∇ f (wt)

using the above equation (1),

f (wt+1) ≤ f (wt)+ < ∇ f (wt), wt + 1 − wt > +M||wt+1 − wt||2

by plugging

wt+1 − wt = −η∇ f (wt)

we get

f (wt+1) ≤ f (wt)− η||∇ f (wt)||2|+ Mη2||∇ f (wt)||2

Substituting

η =
1

2M

f (wt+1) ≤ f (wt)−
1

2M
||∇ f (wt)||2 +

1
4M

||∇ f (wt)||2

f (wt+1) ≤ f (wt)−
1

4M
||∇ f (wt)||2

f (wt+1) ≤ f (wt)−
η

2
||∇ f (wt)||2 − > Equation(2)

So based on the Taylor Approximation, for smooth functions if η is small, the
bound holds with some loss in the constant as it is η/2. The smoothness tells
that the error in the Taylor approximation is small and which means that the
drop we get in the function is very close to what we expect as the first order
Taylor approximation.

If the function is M smooth, it holds in the neighborhood of radius about
1/2M.

After telescoping sum for all t in equation f (wt+1) ≤ f (wt)− 1
4M ||∇ f (wt)||2

∑
t
|∇ f (wt)|2 ≤ 4M( f (w0)− f (wt+1))
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Since f (wt+1) ≥ f (w∗)

∑
t
|∇ f (wt)|2 ≤ 4M( f (w0)− f (w∗))

3 Gradient Descent Analysis for convex smooth

functions

Based on our earlier analysis, we know that:

ϕt = ||wt − w ∗ ||2

ϕt − ϕt+1 ≥ 2η( f (wt)− f (w∗))− η2||∇ f (wt)||2

From Eq (2)

||∇ f (wt)||2 = 2/η f (wt)− f (wt+1)

f (wt)− f (w∗) ≤ ϕt − ϕt + 1
2η

+ η/2||∇ f (wt)||2

f (wt)− f (w∗) ≤ ϕt − ϕt + 1
2η

+ ( f (wt)− f (wt+1)

By telescoping sum for all t, we get

1
T

T

∑
t=1

f (wt)− f (w∗) ≤ 2M(ϕ0 − ϕt+1)

T
+

f (w0)− f (wt)

T

since ϕ0 − ϕt+1 ≤ ϕ0 ≤ B2, where B = |w0 − w∗|.

1
T

T

∑
t=1

f (wt)− f (w∗) ≤ 2MB2

T
+

f (w0)− f (wt)

T

If f (w0)− f (wt) ≤ C, which means the starting function value and the mini-
mum function value is C distance apart.

1
T

T

∑
t=1

f (wt)− f (w∗) ≤ 2MB2

T
+

C
T

So here the error after T steps is proportional to 1
T , where as in normal gradi-

ent descent, the error is error proportional to 1√
T

, so we converge at a faster
rate than the normal gradient decent.
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4. Non Convex Smooth function

4 Non Convex Smooth function

If f is non convex but M-smooth, (smoothness is upper bounded by a quadratic),
then analysis before (with η = 1/2M) implies that

||∇ f (wt)||2 ≤ 4M( f (wt)− f (wt+1)

1
T

T

∑
t=1

||∇ f (wt)||2 ≤ 4M( f (wo)− f (w∗))
T

The consequence of this is, there exists some t such that,

||∇ f (wt)||2 ≤ 4MC
T

which means there exists say some point t where gradient converges to smaller
value which is called as an approximate singular point.

So we can use this in the analysis of non convex functions, even if we per-
form gradient descent, we converge to a point where the gradient is close to
zero. This can be either local maxima or local minima. But with majority of
functions which we use always tends to local minima.
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