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Abstract

This lecture reviewed the basic theorem of the gradient descent for
a convex, L-Lipschitz function and introduced its variants, online con-
vex optimization and stochastic gradient descent. Further, we learned that
more structure on the function, such as smoothness and strong convexity,
provides a faster convergence rate.

1 Recap: Gradient Descent Analysis

Gradient descent is an iterative algorithm for finding a (local) minimum of a
differentiable function. Particularly, we are interested in finding the minimizer
(or the minimum value) for a convex function. A function f : D → R is convex if

for all x, y ∈ D and 0 ≤ t ≤ 1,
f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y).
Any local minimum of a convex function
is the global minimum.

The gradient of a scalar-valued multi-
variable function f (x1, x2, . . . , xd), de-
noted by ∇ f , is given by ∇ f =(

∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xd

)
.

Gradient Descent for Convex Functions

Given a convex function f : D → R defined over a convex domain
D ⊆ Rd, the algorithm starts with some feasible point w0 ∈ D. Then,
for t = 0, 1, . . . , T − 1 iteratively set wt+1 = Π (wt − ηt∇ f (wt)), where
ηt is the learning rate at step t and Π : Rd → D is a projection to the
feasible set.

Projection to the feasible set can be “hard”
if the domain is not “simple”.

1.1 Basic theorem

For analysis, we assume that the convex function f is L-Lipschitz and its do-
main is all of Rd. A function is called L-Lipschitz when:

(1) | f (x)− f (y)| ≤ L‖x− y‖ for every x, y

This implies the following, although we left the proof as an exercise. One may use the multi-variable Mean
Value Theorem, which states that for ev-
ery x, y, there exists z ∈ [x, y] such that
f (x)− f (y) = 〈∇ f (z), x− y〉.(2) ‖∇ f (x)‖ ≤ L for every x

Let w∗ ∈ Rd be the optimum minimizer, that is, w∗ = arg min
x∈Rd

f (x). Then, we

introduce a parameter B ∈ R, which bounds how bad the starting point is.

(3) |w0 − w∗| ≤ B

For the given step t, how far is f (wt) from f (w∗)? By the convexity of f , we
have:

(4) f (w∗) ≥ f (wt) + 〈w∗ − wt, ∇ f (wt)〉
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1. Recap: Gradient Descent Analysis

For a differentiable function f , the tan-
gent at x is the linear function `(y) =
f (x) + 〈∇ f (x), y− x〉. If f is convex, it
must hold that f (y) ≥ `(y).

And we get:

(5) 〈wt − w∗, ∇ f (wt)〉 ≥ f (wt)− f (w∗)

Now, let us define the potential function Φt := ‖wt − w∗‖2 for the given t, and
consider the potential drop Φt −Φt+1.

Φt −Φt+1 = ‖wt − w∗‖2 − ‖wt+1 − w∗‖2(6)

= ‖wt − w∗‖2 − ‖wt − η∇ f (wt)− w∗‖2
wt+1=wt−η∇ f (wt)

= ‖wt − w∗‖2 − ‖(wt − w∗)− η∇ f (wt)‖2

= ‖wt − w∗‖2− (norm of a sum of vectors)[
‖wt − w∗‖2 − 2 〈wt − w∗, η∇ f (wt)〉+ ‖η∇ f (wt)‖2

]
= 2η 〈wt − w∗, ∇ f (wt)〉 − η2‖∇ f (wt)‖2

≥ 2η [ f (wt)− f (w∗)]− η2‖∇ f (wt)‖2 from (5)

≥ 2η [ f (wt)− f (w∗)]− η2L2 from (2)

Therefore, we get:

(7) f (wt)− f (w∗) ≤ Φt −Φt+1

2η
+

L2η

2

Finally, consider the sum over these values after T steps.

T−1

∑
t=0

f (wt)− f (w∗) ≤
T−1

∑
t=0

Φt −Φt+1

2η
+

L2η

2
(8)

=
1

2η

(
T−1

∑
t=0

Φt −Φt+1

)
+ T · L2η

2

=
Φ0 −ΦT

2η
+ T · L2η

2
(telescoping sum)

=
‖w0 − w∗‖2 − ‖wT − w∗‖2

2η
+ T · L2η

2

≤ ‖w0 − w∗‖2

2η
+ T · L2η

2

≤ B2

2η
+ T · L2η

2
from (3)

This gives the following theorem.

1.1 theorem. Consider running T steps of gradient descent with a fixed learning
rate η. Then we have:

1
T

T

∑
t=1

f (wt)− f (w∗) ≤ B2

2ηT
+

L2η

2

Here we use indices t ∈ [1, T], and (8) still
holds.
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1.2. Constrained domain

When we set η = B
L
√

T
, we get a nicer form:

(9)
1
T

T

∑
t=1

f (wt)− f (w∗) ≤ BL√
T

We say this is 1√
T

-convergence.

1.2 Constrained domain

The same proof works if we had a constrained domain.

Let wt+ 1
2
= wt − η∇ f (wt), which may or may not be feasible. Then, we have

the following due to the convex domain.

(10) ‖w∗ −Π
(

wt+ 1
2

)
‖2 ≤ ‖w∗ − wt+ 1

2
‖2

It turns out that the projection to the feasible set does not violate any inequal-
ities in the main proof.

1.3 Different functions at time steps

The proof works even if functions at different time steps were different. Let
f1, f2, . . . , fT be all convex, L-Lipschitz functions.

We update our gradient descent to wt+1 = wt −∇ ft(wt). Now the potential
drop becomes:

Φt −Φt+1 = 2η 〈∇ ft(wt), wt − w∗〉 − η2‖∇ ft(wt)‖2(11)

≥ 2η [ ft(wt)− ft(w∗)]− η2L2

This implies the following result.

(12)
T

∑
t=1

ft(wt)− ft(w∗) ≤
B2

2η
+

L2ηT
2

When η = B
L
√

T
, we have:

(13)
T

∑
t=1

ft(wt)− ft(w∗) ≤
√

T

2 Online Convex Optimization

Now, let us see some application of gradient descent. The previous result is
directly applicable to the online convex optimization, where a learner makes
a series of decisions to minimize the total loss, and loss functions (convex,
L-Lipschitz) f1, . . . , fT over the same domain D are given sequentially. Think about learning game where adver-

sary chooses functions.
We want our total loss to be comparable with the best fixed minimizer x in

hindsight. That is, x∗ = arg min
x∈D

T

∑
t=1

ft(x).
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3. Stochastic Gradient Descent

From (13), we obtain:

(14)

(
T

∑
t=1

ft(xt)

)
−min

x∈D

T

∑
t=1

ft(x) ≤
√

T

The left-hand side of (14) is called regret. If we want to compare our decisions
to a dynamic minimizer, it is called switching regret or dynamic regret.When there are k switches, the right-hand

side of (14) becomes
√

kT.

3 Stochastic Gradient Descent

In stochastic gradient descent (SGD), we do not require to use the same func-
tion f for every iteration, but we randomly choose a function g such that the
expected value of g over the possible functions is equal to f (i.e. f = E[g]).

For example, ERM (empirical risk minimization) for training data
(x1, y1), (x2, y2), . . . , (xm, ym) can be viewed as loss:

(15) f :
1
m

m

∑
i=1

`(hw(xi), yi)

Imagine we sample an index i ∼ [m] at random (with replacement). If we[m] denotes [1, m] = {1, . . . , m}.

define gi(w) = `(hw(xi), yi), then we have:

(16) f (w) =
1
m

m

∑
i=1

gi(w)

From the linearity of the gradient,
∇ f = 1

m ∑m
i=1∇gi . Now, consider T iterations where at each step t, we pick it ∼ [m]. We write

ht(w) = git(w) for the function chosen at step t as a random variable. Observe
that at every step t, E[ht] = f .f = E[ht ] holds even if we had larger batch

sizes.

The stochastic gradient descent works as follows.

Stochastic Gradient Descent

Given a convex function f : D → R defined over a convex domain D ⊆
Rd and a distribution X of functions (D → R) such that f = Eh∼X [h],
the algorithm starts with some feasible point w0 ∈ D.
Then, for t = 0, 1, . . . , T − 1 iteratively pick a random function ht ∼ X
and set wt+1 = Π (wt − η∇ht(wt)), where η is the learning rate and
Π : Rd → D is a projection to the feasible set.

Intuitively, we can decompose a function f into a number of simple functions
g1, . . . , gm so that (16) holds. And for each step we randomly pick one of the
gi’s and perform gradient descent as usual.

3.1 Analysis of Stochastic Gradient Descent

Here we want to prove the following theorem.

3.1 theorem. Let w be the average point over w1, . . . , wT chosen by stochastic gra-
dient descent, that is, w = 1

T ∑T
i=1 wi, and w∗ be the optimum minimizer w∗ =
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3.1. Analysis of Stochastic Gradient Descent

arg minx∈D f (x). Then,

E[ f (w)]− f (w∗) ≤ B2

2ηT
+

L2η

2
,

where |w0 − w∗| ≤ B and L is a bound on the Lipschitz constant of all the gi’s.

Notice that in SGD wi’s and w are random variables. From Jensen’s inequality,
we have: See Section 14.1.1 (page 186) of Shalev-

Shwartz and Ben-David’s book.

f (w)− f (w∗) = f

(
1
T

T

∑
t=1

wt

)
− f (w∗)(17)

≤ 1
T

(
T

∑
t=1

f (wt)

)
− f (w∗)

=
1
T

T

∑
t=1

f (wt)− f (w∗)

A key idea to proceed the proof is to keep track of the expected potential drop.

Eht [Φt −Φt+1 | wt] = Eht [2η 〈∇ht(wt), wt − w∗〉]− η2‖∇ht(wt)‖2](18)

≥ 2η ·Eht [〈∇ht(wt), wt − w∗〉]− η2L2 from (2)

= 2η ·
〈
Eht [∇ht(wt)], wt − w∗

〉
− η2L2

= 2η · 〈∇ f (wt), wt − w∗〉 − η2L2

≥ 2η( f (wt)− f (w∗))− η2L2 from (5)

The expectations are over the choice of ht.

Now, the remaining task is to accumulate the left-hand side of (18). Notice
that it still telescopes; what we condition on doesn’t matter! Convince yourself with T = 2.

(19)
T

∑
t=1

Eht [Φt −Φt+1 | wt] = Eh1,h2,...,hT [Φ1 −ΦT+1] ≤ Φ0 ≤ B2

The accumulated right-hand side would be:

T

∑
t=1

2η( f (wt)− f (w∗))− η2L2 = 2η

[
T

∑
t=1

f (wt)− f (w∗)

]
− Tη2L2

≥ 2ηT ( f (w)− f (w∗))− Tη2L2 from (17)

= ηT
[
2 (E[ f (w)]− f (w∗))− ηL2

]
(20)

By combining (19) and (20), we obtain the following, which completes the
proof.

B2 ≥ ηT
[
2 (E[ f (w)]− f (w∗))− ηL2

]
(21)

E[ f (w)]− f (w∗) ≤ B2

2ηT
+

L2η

2
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4. More Structure On Function

4 More Structure On Function

4.1 Smooth functions

A function is smooth if its gradient is also Lipschitz (i.e. the gradient does
not change rapidly). The gradient descent for smooth functions achieves 1

T -
convergence. This topic was covered in Lecture #13.

4.2 Strongly convex functions

A function f is strongly convex if f (y) ≥ f (x) + 〈∇ f (x), y− x〉 + µ‖y − x‖2

for some µ ≥ 0 and for all x, y. In this case, an error is bounded by e−T afterA function is convex when µ = 0.

T steps.

Refer to Section 14.4.4 (page 195) of Shalev-Shwartz and Ben-David’s book.
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