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Abstract

This lecture covers the proof for vanilla analysis of gradient descent
and projective gradient descent with basic inequalities and potential func-
tions.

1 Gradient Descent Algorithm

Let us consider continuous differentiable function f : Rd −→ R in domain.
Gradient descent is an iterative algorithm. We start with a feasible point of
w0.Then, at each iteration, we take a step in the direction of the negative of
the gradient at the current point from t = (0, 1, 2, ..T − 1). The update of step
is given by,

w(t+1) = w(t) − η∇ f (w(t))

Where η is some fixed parameter determine learning rate .

If w(t+1) is outside the domain D .We take the closest point to that in our
domain as the next point,which in general is the projection from that point
onto the function.

There are few issues to address in this algorithm like how much to move
in each step (aka learning rate). Which comes to:

• How should we set η ?

• Should η depend on t ?

Its natural to say that η should depend on t. which is what we wanted in
practice.
Going further we will discuss much more about how to choose η.

2 Vanilla Analysis of Gradient Descent

Lipschitz property:- A function f : Rd → R is said to be L-Lipschitz if

| f (x)− f (y)| ≤ L||x − y|| ∀x, y.
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3. Proof for Vanilla Analysis of Gradient Descent

Which is equivalent to saying, ||∇ f (x)|| < L
Intuitively, a Lipschitz function cannot change too fast.

The Vanilla Analysis is studying gradient descent algorithm under the two
assumptions:

• f is L-Lipschitz, and domain D = Rd

• The starting point w0 is at a distance ≤ B from the optimum point w∗

Theorem:Consider running T steps of gradient descent with a fixed learning
rate η, then we have

(1)
1
T

T

∑
t=1

f (wt)− f (w∗) ≤ B2

2ηT
+

L2η

2

where w∗ is the true minimizer of f i.e, w∗ = argminx∈Rd f (x)

If we set point w
′
t =

1
T (w1 + w2 + ... + wt) and from definition of convex func-

tion we can write below inequality

f (w
′
t) ≤

1
T
( f (w1) + f (w2) + ... + f (wt))

Now we can rewrite the above gradient descent equation as

f (w
′
t)− f (w∗) ≤ B2

2ηT
+

L2η

2

If we take η to be very small like ϵ
L2 and T is very large. we get the value on

the right side to be very small. which mean we are converging wt to w∗ (Point
at which minimum value exists).

Which intuitively mean if we do small enough stepsize based on gradient
value and enough number of steps we converge to minimum value.

3 Proof for Vanilla Analysis of Gradient Descent

According to the basic inequality of convexity, the function lies ”above” the
tangent plan at any point.

f (y)− f (x) ≥ ⟨∇ f (x), y − x⟩

As we move from any point on a convex function and move towards the
minimizer, by inequality we can write the following:

(2) f (w∗)− f (wt) ≥ ⟨∇ f (wt), w∗ − wt⟩

Which intuitively tells us keeping track of ||w∗ − wt|| would be helpful to
prove above theorem

So we define potential Φt = ||w∗ − wt||2
So our hope is that Φt reduces with time. we use this to analyse our algorithm.
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Now we calculate Φt − Φt+1 using wt+1 = wt − η∇ f (w(t))

Φt − Φt+1 = ||w∗ − wt||2 − ||w∗ − wt + η∇ f (w(t))||2

Φt − Φt+1 = −2η⟨ w∗ − wt,∇ f (w(t))⟩ − η2||∇ f (w(t))||2

Using inequality-(2) for convex functions f (w∗)− f (wt) ≥ ⟨∇ f (wt), w∗ − wt⟩
we can write

−2η⟨ w∗−wt,∇ f (w(t))⟩− η2||∇ f (w(t))||2 ≥ −2η[ f (w∗)− f (wt))]− η2||∇ f (w(t))||2

Φt − Φt+1 ≥ −2η[ f (w∗)− f (wt)]− η2||∇ f (w(t))||2

If we reorganize above equation

2η[ f (wt)− f (w∗)] ≤ Φt − Φt+1 + η2||∇ f (w(t))||2

f (wt)− f (w∗) ≤ Φt − Φt+1

2η
+

η

2
||∇ f (w(t))||2

Since the function is L-Lipschitz ∀ x, ||∇ f (x)|| ≤ L

f (wt)− f (w∗) ≤ Φt − Φt+1

2η
+

ηL2

2

If we do summation of the above equation for all t values

T

∑
t=1

f (wt)− f (w∗) ≤ Φ0 − ΦT
2η

+
ηTL2

2

Since ΦT is square which is always positive Φ0 − ΦT ≤ Φ0 and Φ0 ≤ B2. So
Φ0 − ΦT ≤ B2

T

∑
t=1

f (wt)− f (w∗) ≤ B2

2η
+

ηTL2

2

Dividing by T on both sides,we proved the theorem

1
T

T

∑
t=1

f (wt)− f (w∗) ≤ B2

2ηT
+

L2η

2

Now lets see what will be the best value of η for a given T . Since our right

side bound need to be minimized. we need find η for which B2

2ηT + L2η
2 will be

minimized.

By A.M ≥ G.M inequality.

B2

2ηT + L2η
2

2
≥

√
B2

2ηT
.
L2η

2

B2

2ηT
+

L2η

2
≥ B.L√

T
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4. Projected Gradient Descent

Equality occur when both are equal B2

2ηT = L2η
2

so η = B
L
√

T
is the best η we could take for a given T . So that

1
T

T

∑
t=1

f (wt)− f (w∗) ≤ B.L√
T

So the above equation imply. we start far from the minimum which mean B is
large, In order to come close to minimum you need to have large T from the
above equation.which means it takes more number of iterations.

Here in vanilla gradient descent if we do T iterations we are coming close
to minimum by 1√

T
times the original distance rather than 1

T times.In order

to get 1
T times closer we need to have extra constrains on the function like

smoothness, which we will be discussing on the further classes.

The same can be interpreted as if we want to get ϵ closer to minimum value
we need to do O( 1

ϵ2 ) iterations.

B.L√
T

= ϵ

T =
B2.L2

ϵ2

4 Projected Gradient Descent

For a bounded domain D, Gradient descent definition is as follows.

Suppose we have point wt in Domain at tth iteration and when we are go-
ing to the next iteration of the gradient descent algorithm and our new point
was going outside of the domain. Then we take the projection of that point
onto the domain and continue the process.

let wt+ 1
2

be the point that went outside the domain.Now we need to take the
projection of that point on to domain to find the wt+1.

wt+ 1
2
= w(t) − η∇ f (w(t))

wt+1 = ΠD[wt+ 1
2
] = argminx∈D||wt+ 1

2
− x||

when we project the wt+ 1
2

to wt+1 in the domain by taking gradient of the
function at the projection wt+1 Since the function value is always above the
gradient. By the property of the side opposite to the obtuse angle is the largest
in the triangle we prove the below inequality.
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||w∗ − wt+1||2 ≤ ||w∗ − wt+ 1
2
||2

Φt − Φt+1 ≤ Φt − Φt+ 1
2

Since we use Φt − Φt+ 1
2

with wt+ 1
2
= wt − η∇ f (w(t)) from gradient descent

algorithm

Φt − Φt+ 1
2
= ||w∗ − wt||2 − ||w∗ − wt + η∇ f (w(t))||2

Φt − Φt+ 1
2
= −2η⟨ w∗ − wt,∇ f (w(t))⟩ − η2||∇ f (w(t))||2

Φt − Φt+ 1
2
≥ −2η[ f (w∗)− f (wt)]− η2||∇ f (w(t))||2

From the the equation Φt − Φt+1 ≤ Φt − Φt+ 1
2

we can say the below equation

Φt − Φt+1 ≥ Φt − Φt+ 1
2
≥ −2η[ f (w∗)− f (wt)]− η2||∇ f (w(t))||2

Φt − Φt+1 ≥ −2η[ f (w∗)− f (wt)]− η2||∇ f (w(t))||2

Now we continue with the same proof as normal gradient descent algorithm
which will prove the same analysis for projected gradient descent with the
projection points gives the same bounds.

5 Extensions of Gradient Descent

What if functions at different steps are different in gradient descent ?

If all the functions are convex and L-Lipschitz and ft(x) is varied function
which is taken at time-t. we can write ∀w∗ ∈ D

ft(w∗)− ft(wt) ≥ ⟨∇ ft(wt), w∗ − wt⟩

we can do similar analysis as gradient descent to this algorithm too and we
get the below equation

1
T

T

∑
t=1

ft(wt)− ft(w∗) ≤ B2

2ηT
+

L2η

2
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5. Extensions of Gradient Descent

This equation is exactly similar to online convex optimization which we will
be discussing in the coming classes.
where we be will comparing the error from the best fixed strategy that can be
used.

we also use the above algorithm in stochastic gradient descent, where in each
step we take different examples and create a different loss function and try
to reach minimum value by moving in opposite direction of gradient of that
function at each step.

we will formally prove the above equation and do analysis on bounds in the
next lecture.
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