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Abstract

In the last few lectures we saw how empirical risk minimization allows
us to get good generalization bounds. In this lecture, we will briefly recap
what we have seen and introduce the ideas of loss functions and optimiza-
tions. We will introduce the idea of using loss functions to approximate
the errors, basics of convexity and the idea of approximating the error
bounds using convex functions.

1 Introduction

Previously, in our course, we established a formal framework about learning.
We studied the idea of learning and generalization over a distribution where
the distribution captures all the data we have to learn from and we hope
to learn a good enough hypothesis using a small set of samples. We also
studied no-free lunch theorem which gave the notion of inductive bias and the
necessity of choosing a hypothesis class for learning. We followed this with
PAC learnability of a hypothesis class and the notions of agnostic learning PAC learning captures the idea of learning

from examples where you are given a set
of examples and you try to find the best
hypothesis. PAC learning does not contain
a notion of how the sampling is carried out
and it does not assume that the examples
are chosen carefully.

and an improper learner. We also introduced the notion of a growth function

Agnostic learning implies that the target
hypothesis does not belong to the hypothe-
sis class we have chosen. Improper learner
is an algorithm such that the output of the
algorithm is outside of the hypothesis class
(Ex: Nearest Neighbor Classifier).

of a hypothesis class and showed how this relates to the number of examples
a random sample should contain for it to be a representative sample and
thus lead to class being learnable from the specific sample. This enabled us
to introduce the notion of shattering and VC dimensions, which as we saw,
captured the notion of learnability. Formally, we saw that a hypothesis class
H is PAC learnable (or agnostic PAC learnable) implies it has a finite VC
dimension (and vice versa). Note that one of the implications of this is, if VC
dimension of H is infinite, then it is not PAC learnable.

While what we have studied so far, allows us to get good generalization
bounds, one thing we can see is that the bounds we have derived so far only
applies to the case of Emperical Risk Minimization (ERM) algorithm, where
you do proper learning. What we were able to show was that a small sample
is a representative sample, and for any hypothesis in the class the training
error over the representative sample and test error over the distribution are
close enough. If the hypothesis is outside of your class, this does not imply
anything. Therefore, the results would not hold true for an improper learner
for instance. While ERM is a very strong algorithm that can give you the best
hypothesis given enough samples, it turns out doing ERM is very inefficient
in practice. Therefore, it is necessary to come up with an alternative approach
that is efficient as well as that is able to give good enough guarantees. The
people have come up with for this, is the idea of loss minimization and opti-
mization, which will be the main topic of our discussion in today’s class.
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2. Loss Minimization

2 Loss Minimization

Assume we are given the task of finding the best linear classifier for a given
set of points. It turns out this problem is NP hard even in this simplest setting.
In order to handle this, we introduce the idea of loss functions and loss min-
imization. In the case of linear classifiers, if we use ERM, our goal would be
to minimize the number of mistakes which we can see, is a discrete problem.
With loss functions what we do is to relax this discrete problem in to contin-
uous problem, which could allows us to approximately solve it efficiently.

Consider the setting where we are given m examples (x1, y1), (x2, y2), . . . , (xm, ym),
where xi ∈ Rn and yi ∈ {−1, 1} for all i ∈ [m]. Given the m examples, the goal
of ERM is to find the hypothesis that minimizes the loss (or error), which can
be formally stated as,

(1) Minimize

1
m

m

∑
i=1

1 [h(xi) ̸= yi]

The idea of loss minimization can be seen to follow from the same idea. Now
instead of minimizing the number of mistakes, we try to minimize the ”loss”
from each example. Let l be some loss function (that is selected by us), then
the goal in loss minimization is to,

(2) Minimize

1
m

m

∑
i=1

l (h(xi), yi)

We can see that depending on the choice of loss functions we would be able
to use this method to find good enough hypothesis efficiently whereas find-
ing the best hypothesis for ERM (which is equivalent to setting loss function
l(h(xi), yi) = 1 [h(xi) ̸= yi]) turns out to be NP-hard even for the linear classi-
fiers.

Commonly used loss functions include,

1. Square loss, i.e. l(h(xi), yi) = (h(xi)− yi)
2

2. ℓ1 loss, i.e. l(h(xi), yi) = |h(xi)− yi|

3. Logistic loss, i.e. l(h(xi), yi) = log
(

1
1+e−h(xi)·yi

)
Generally, given a hypothesis h, we parameterize the hypothesis h and then
use loss functions to find the best parameters (the best hypothesis). We will
see this in the example of the use of square loss function in finding the best
linear classifier. Let h(x) = ⟨w, x⟩+ b where w, x ∈ Rn and b ∈ R (where w, b
are the parameters). Our goal is to find w, b such that the ”loss” is minimized.
Given m examples, this can be stated in terms of square loss as,

Minimize

1
m

m

∑
i=1

(yi − ⟨w, x⟩ − b)2

This turns out to be the least-squares regression problem, which is a well-While this approach gives us a linear clas-
sifier, note that this might not result in the
same linear classifier you might get using
ERM. Loss minimization does not solve
ERM exactly, but gives a way to solve it
approximately. Since ERM is NP hard for
even in the case of linear classifiers, we
use loss minimization to solve it approxi-
mately.

studied problem in machine learning. This problem can be solved efficiently
to find the best linear classifier in terms of squared loss.

Note that the choice of the loss function is important and depending on the
problem, the choice of loss function would determine whether the hypothesis
that minimizes the loss function can be found efficiently.
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Loss minimization can be seen to part of the general mathematical framework
of optimization. Next we will see a special class of optimization that would be
useful to us when it comes to minimization tasks.

3 Convex Optimization

Following the idea of loss minimization, we will go over a class of optimiza-
tion known as convex optimization. The idea of convex optimization is to,
given a convex function defined on a convex domain, find the minimizer. To
properly understand this we need to define what convex domain and convex
functions are.

3.1 definition. (Convex Domain) Consider a domain D ∈ Rd. We call D a We can also define a domain D to be convex
if the line segment xy is contained in D
which is the same as Definition 3.1convex domain, if ∀x, y ∈ D, we get that αx+ βy ∈ D ∀α, β such that α+ β = 1.

We can see that the domain Rd itself is a convex domain. Also note that we
have not assumed anything about the boundedness of D. D could be either
bounded or unbounded.

3.2 definition. (Convex Function) Given a function f : Rd → R, we call it a We can also define convex functions as
function f : Rd → R such that ∀x, y ∈
Domain( f ) f

(
x+y

2

)
≤ f (x)+ f (y)

2 . Also,
in real analysis for functions f : R → R,
convexity can be defined as f ′′(x) ≥ 0, ∀x
when f is twice differentiable. The defini-
tion of 3 works for any function f .

convex function if ∀x, y ∈ Domain( f ),

(3) f (tx + (1 − t)y) ≤ t · f (x) + (1 − t) · f (y), ∀t ∈ [0, 1]

(a) f (x) = ex (b) f (x) = x2 − 1

Figure 1: Some examples of convex functions
While minimizing a convex function f
over a convex domain D is easy, the maxi-
mization of a convex function f turns out
to be hard. While the maximum of a convex
function is always attained at the boundary
of the domain, depending on the geometry
of the boundary this could be hard.

Convex functions defined on convex domains, adhere to certain properties
that allow us to use them efficiently to solve minimization problems, as can
be seen in the following lemma.

x ∈ D is a local minimum if ∃ a ball of
radius r > 0 such that ∀y ∈ Ball(x, r)
(where Ball(x, r) is the ball of radius r cen-
tered at x), f (x) ≤ f (y)

3.3 lemma. Given a convex function f defined on a convex domain D, if x ∈ D is a
local optimum for function f , then x is also a global optimum, i.e.

min
z∈D

f (z) = f (x)

Proof. Let z be the global optimum. Assume f (z) < f (x). We can see that
∃y ∈ Ball(x, r) and t ∈ [0, 1] such that y = t · z + (1 − t) · x (a point inside the
ball on the line segment xz).

Since f is convex we can see that,

f (y) ≤ t · f (z) + (1 − t) · f (x) < t · f (x) + (1 − t) · f (x) = f (x)

However, this is a contradiction since x is a local optimum and therefore
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3. Convex Optimization

f (x) ≤ f (y). Therefore, we can see that f (z) ≥ f (x). Since z is a global
optimum, this implies f (z) = f (x) so x is also a global optimum.

The implication of this result is that if the domain and the function are convex,
we could hope to use local search methods to find a solution. We could start
with a point x and then move to a neighboring point that results in a smaller
f value. Iteratively doing this would allow us to find a optimal solution (if
you cannot move to a neighboring point to reduce the f value, then you have
found a local optimum and since the function and domain are convex, it is
also a global optimum).

In the next lecture, we will introduce the gradient descent algorithm and its
variants, which are built upon the aforementioned local search idea.
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