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Abstract
The lecture discusses the Fundamental Theorem of Statistical ML, some

of the main implications of the theorem, as well as provides introduction
to Optimization.

1 Introduction

One of our goals is to make sure that a random sample S taken from distri-
bution D is a representative sample. Showing that a random sample is rep-
resentative was discussed in the previous lecture, including the challenging
case when the hypothesis class is infinite. For the latter case we introduced
growth function τH(m) defined as the maximum number of distinct ways in
which hypotheses in H classify S.

Additionally, we discussed the following theorem that bounds the error of the
sample S and distribution D in terms of the growth function:

1.1 theorem. Suppose τH(m) be the growth function of a hypothesis class H. Then
for any X, D, if we take a sample S of size m, with probability 1 − δ,

suph∈H |err(h, S)− err(h, D)| ≤ 4 +
√

logτH(2m)

δ
√

2m

This theorem can be applied for infinite hypothesis classes, and informally
can be described by saying that if the growth function is small enough, then a
random sample of size m is ϵ representative.

If the growth function is polynomial, τH(m) ≈ md for some parameter d,

then choosing m ∼ dlog( d
ϵ )

ϵ2 leads to a special case when the right-hand-side
of the theorem becomes < ϵ, meaning that the random sample of size m is
ϵ-representative w.p. 0.9.

However, for exponential cases, such as τH(m) = (1.5)m, it is impossible to
know if the right-hand-side is small enough; hence, the above theorem cannot
be used to show learnability.

1.2 definition. A hypothesis class H : {h : X → {0, 1}} is said to shatter a
set S ⊆ X if all 2|S| possible classifications can be obtained using hypotheses
h ∈ H.

1.3 definition. VC dimension is the size of largest set in X that can be shat-
tered by H, i.e. max{m : ∃S of size m that is shattered}.
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3. Fundamental Theorem of (Stat) Learning Theory

2 Sauer-Shelah Lemma (Vapnik-Chervonenkis)

For finite hypothesis classes with VC dimension d we have the following
lemma:

2.1 lemma. Let H be a hypothesis class of finite VC dimension d. Then for every m
we have:

τH(m) ≤
(

m
0

)
+

(
m
1

)
+ ... +

(
m
d

)
≈ md

The lemma provides a better upper bound for growth function for large
enough m.

Along with theorem 1.1, this lemma tells us that with finite VC dimension, the
growth function has an upper bound of md, which itself implies that choosing

m >
dlog( d

ϵδ )

(ϵδ)2 gives us an ϵ representative sample. The proof of the lemma is
done through inductive argument.

3 Fundamental Theorem of (Stat) Learning Theory

As a consequence of Lemma 2.1 and Theorem 1.1 we have the following the-
orem called Fundamental theorem of Stat Learning Theory:

3.1 theorem. The following statements are equivalent:

• Class H is PAC learnable.

• Class H is agnostically PAC learnable.

• Class H has finite VC dimension.

The above theorem implies that if H has infinite VC dimension, then it is not
PAC learnable. This claim is proven similarly to the no-free-lunch theorem.To prove that VC dimension is infinite, you

show that for any m ∈ N, ∃ an S of size m
that can be shattered. PAC learning by default, or in the ”realizable case”, means that H is a given

hypothesis class and if true labeling function is some h ∈ H then we can find
some h′ such that risk(h′) ≤ ϵ. In other words, we are guaranteed to find a
function h′ where risk is 0 if we are given (x, h(x)) where h is in the class H.

However, in agnostic PAC-learning case nothing can be assumed about the
true labeling function. Instead, given H hypothesis class for any true label
function f , we can find h′ such that risk(h′) ≤ minh∈H(risk(h) + ϵ).

PAC-learnability implies that if we could solve ERM using log( 1
ϵ )

ϵ2 then error
will be at most ϵ worse than best separator. However, solving ERM is harder
in non-realizable case than in realizable.

The Fundamental theorem and its proof also imply that ERM is all we need
assuming enough samples. Additionally, in terms of sample complexity, the
agnostic case is usually as hard as the realizable case. Finally, the learnabil-
ity guarantees mentioned in the theorem, only apply to ERM, not to other
improper learners. In particular, performing an ”improper learning” and ob-
taining h with 0 training-error does not imply that h ∈ H and hence, the
theorem does not apply in this case.
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4 Optimization

In the next few lectures, we will look at some optimization methods. Due to
the ERM problem being NP-hard, most of these methods are not guaranteed
to find optima except for some settings.

Let’s look at linear classification problem in general d dimension case as a
start to discussing optimization. Assume, we are given (x, f (x)) points where
x ∈ Rd is a feature vector, and consider H = {h of the form sign (⟨a, x⟩+ b)
for some a ∈ Rd and b ∈ R, x = (x1, x2, ..., xd)}. It can be shown that the VC-
dimension of H is d + 1. Given true label function, VC theory says that with
d
ϵ2 samples, we can find the ”best” linear classifier for any D data distribution
and any ground truth f . If f ∈ H, i.e. in the realizable case, the problem can
be solved through linear programming by defining constraints in the form:
⟨a, x(1)⟩ + b > 0, ⟨a, x(2)⟩ + b < 0 assuming label of x1 is positive and x2 is
negative.

However, in the non-realizable case the problem is NP-hard when we try to
achieve an error of 1

2 − δ (i.e. any error less than half). Therefore, in ML,
instead of trying to solve the binary ERM problem, we use loss functions as
proxy for ERM.

In the next classes, we will look into some common loss functions and how to
optimize them.
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