LECTURE #4: (AGNOSTIC) PAC LEARNING

Instructor: Aditya Bhaskara Scribe: Ishaan Rajan

CS 5966/6966: Theory of Machine Learning

January 20th, 2022

Abstract

In this lecture we introduce the notion of agnostic PAC learning and the idea that finite classes are PAC learnable.

1 Review and Introduction

Last class, we proved the No Free Lunch theorem, which had two main takeaways:

- There is no universal learning algorithm, even if allowed to be inefficient
- If we wish to learn some arbitrary function over a set of m points, at least $\frac{m}{2}$ training examples are needed

In other words, in the PAC model, the hypothesis class \mathcal{H} – which consists of all the possible functions over the domain – cannot be learned.

Recall Valient's definition of learnability:

• A concept class is *l*earnable if there exists an efficient algorithm \mathcal{A} with the following property: for all $\epsilon > 0$, there exists m number of samples such that when given m i.i.d. samples from \mathcal{D} along with their labels, \mathcal{A} produces a hypothesis h with risk less than ϵ , with probability \geq 0.9, where risk is the expected error on sample from distribution.

2 PAC Learning – realizable case

A concept class $\mathcal H$ is PAC learnable over domain X (the realizable case) if there exists an algorithm $\mathcal A$ that for all $\epsilon,\delta>0$ and distribution $\mathcal D$, has the following properties:

H: a bunch of hypothesis over X Note: A is allowed to be inefficient.

• Given $m(\epsilon, \delta)$ – the sample size which does not depend on \mathcal{D} – samples (x, (f(x)), where $x \sim \mathcal{D}$ and f is an unknown function in \mathcal{H} , it outputs h with risk at most ϵ with probability at least $1 - \delta$.

Essentially our goal here is to find a true label function $f \in \mathcal{H}$, and declare success if we find h that has risk $\leq \epsilon$.

As such, we can conclude that h need not belong to H. This is known as improper learning.

3 PAC LEARNING - NON-REALIZABLE CASE

A concept class $\mathcal H$ is agnostically PAC learnable over domain X (the realizable case) if there exists an algorithm $\mathcal A$ that for all $\epsilon,\delta>0$ and distribution $\mathcal D$, has the following properties:

- Given $m(\epsilon, \delta)$ samples (x, (f(x))), where $x \sim \mathcal{D}$ and f is an unknown function not necessarily in \mathcal{H} , it outputs h with risk at most ϵ more than the risk of the h' in \mathcal{H} that is "closest" to f with probability at least 1δ .
- Again, the sample size need not depend on \mathcal{D} , and h need not belong to \mathcal{H} .

4 EVERY FINITE CLASS IS PAC LEARNABLE (EVEN AGNOSTIC)

Suppose \mathcal{H} has only finitely many hypothesis $h_1, h_2, \cdots h_N$ over (possibly infinite) input space X. We can prove that \mathcal{H} is still PAC-learnable with the following generic algorithm: Empirical Risk Minimization (ERM).

- get *m* examples
- find $h \in \mathcal{H}$ that minimizes empirical risk
- output h (we are guaranteed one such h)

Empirical risk of *h* and sample S is defined as

$$\frac{1}{|S|} \sum_{x \in S} 1_{h(x) \neq f(x)}$$

Essentially minimizing training error here

This weakens inductive bias

At least ½ samples are needed

1 Question. What is the difference between an example and a sample?

An example is one such (x, f(x)), and a sample S is a collection of these examples.

2 Question. When is ERM bad?

If there are too few examples (i.e. *m* is too small), or we just got unlucky with examples, ERM will not perform well.

5 Representative Sample

Here we will introduce the definition of a representative sample which will be further explained in the following lecture.

Let $\mathcal H$ be a hypothesis class and X be an input space with a distribution $\mathcal D$ on it, and let f be a target function. Sample $S\subseteq X$ is said to be ϵ - "representative" if for all h in $\mathcal H$, we have:

$$\left|\frac{1}{|S|}error(S,h) - risk_D(h,f)\right| < \epsilon$$

In other words, we have the empircal risk minus the true risk with respect to \mathcal{D} .