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Abstract

In this lecture we introduce the notion of agnostic PAC learning and
the idea that finite classes are PAC learnable.

1 Review and Introduction

Last class, we proved the No Free Lunch theorem, which had two main take-
aways:

• There is no universal learning algorithm, even if allowed to be inefficient

• If we wish to learn some arbitrary function over a set of m points, at
least m

2 training examples are needed

In other words, in the PAC model, the hypothesis class H – which consists of
all the possible functions over the domain – cannot be learned.

Recall Valient’s definition of learnability:

• A concept class is learnable if there exists an efficient algorithm A with
the following property: for all ϵ > 0, there exists m number of samples
such that when given m i.i.d. samples from D along with their labels,
A produces a hypothesis h with risk less than ϵ, with probability ≥ 0.9,
where risk is the expected error on sample from distribution.

2 PAC Learning – realizable case

A concept class H is PAC learnable over domain X (the realizable case) if there
exists an algorithm A that for all ϵ, δ > 0 and distribution D, has the following
properties: H: a bunch of hypothesis over X

Note: A is allowed to be inefficient.

• Given m(ϵ, δ) – the sample size which does not depend on D – samples
(x, ( f (x)), where x ∼ D and f is an unknown function in H, it outputs
h with risk at most ϵ with probability at least 1 − δ.

As such, we can conclude that h need not
belong to H. This is known as improper
learning.Essentially our goal here is to find a true label function f ∈ H, and declare

success if we find h that has risk ≤ ϵ.
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5. Representative Sample

3 PAC Learning – non-realizable case

A concept class H is agnostically PAC learnable over domain X (the realizable
case) if there exists an algorithm A that for all ϵ, δ > 0 and distribution D, has
the following properties:

• Given m(ϵ, δ) samples (x, ( f (x)), where x ∼ D and f is an unknown
function not necessarily in H, it outputs h with risk at most ϵ more than
the risk of the h’ in H that is ”closest” to f with probability at least 1− δ.

This weakens inductive bias

• Again, the sample size need not depend on D, and h need not belong to
H.

4 Every finite class is PAC learnable (even agnostic)

Suppose H has only finitely many hypothesis h1, h2, · · · hN over (possibly in-
finite) input space X. We can prove that H is still PAC-learnable with the
following generic algorithm: Empirical Risk Minimization (ERM).

• get m examplesAt least 1
ϵ samples are needed

• find h ∈ H that minimizes empirical risk

• output h (we are guaranteed one such h)

Empirical risk of h and sample S is defined as

1
|S| ∑

x∈S
1h(x) ̸= f (x)

Essentially minimizing training error here

1 Question. What is the difference between an example and a sample?
An example is one such (x, f (x)), and a sample S is a collection of these
examples.
2 Question. When is ERM bad?
If there are too few examples (i.e. m is too small), or we just got unlucky with
examples, ERM will not perform well.

5 Representative Sample

Here we will introduce the definition of a representative sample which will
be further explained in the following lecture.
Let H be a hypothesis class and X be an input space with a distribution D on
it, and let f be a target function. Sample S ⊆ X is said to be ϵ - ”representative”
if for all h in H, we have:

| 1
|S| error(S, h)− riskD(h, f )| < ϵ

In other words, we have the empircal risk minus the true risk with respect to
D.

2


	Review and Introduction
	PAC Learning – realizable case
	PAC Learning – non-realizable case
	Every finite class is PAC learnable (even agnostic)
	Representative Sample

