THEORY OF MACHINE LEARNING

LECTURE 16

REGULARIZATION, STABILITY

SUMMARY OF GRADIENT DESCENT

- Convergence with error $O(\frac{1}{\sqrt{T}})$ after T steps for any L-Lipschitz function
- "Noisy gradient oracle" → stochastic gradient descent
- Error of O(1/T) for "smooth" convex functions (derivative is M-Lipschitz), assuming step size $<\frac{1}{2M}$
- If function is also strongly convex with parameter μ , convergence bound improves to roughly $\exp(-\frac{\mu}{M}T)$ (extends to Polyak-Lojasiewicz)
- Nesterov's "acceleration", <u>preconditioning</u> via the Hessian, or by using first order proxies (AdaGrad), momentum

IMPROVEMENTS, GENERALIZATIONS

- Polyak's "heavy ball" method (momentum)
 - Originally designed for strongly convex functions achieves $\sqrt{\kappa}$ in exponent
- Second order methods, first order "proxies" (AdaGrad)
- <u>Theme:</u> avoid "slow" convergence take large steps when possible
 - Non-convex functions "slip out" of local minima
 - Perturbed gradient descent -- if you're not moving much via gradient descent, just make a "random jump" to a point in a neighborhood
 - Can prove formally that you get out of "bad saddles"

MANY VARIANTS OF GD

"Oh sure, going in that direction will totally minimize the objective function" —Sarcastic Gradient Descent.

CHOOSING LOSS FUNCTIONS

- Saw that "smoother" loss functions lead to "faster" optimization
- Utility versus niceness

- Today's topic
 - "Nice" loss functions come with added benefit: "stability" to input changes
 - Example of quadratic
 - Stability is a form of "simplicity" => generalization

STABILITY OF A LOSS MINIMIZATION ALGORITHM

• Given examples $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, do loss minimization

Can be viewed as map from examples -> parameters w

• How does changing a single (x_i, y_i) change the w?

UNDERSTANDING STABILITY -- LINEAR FUNCTIONS

- Suppose we are optimizing over $w \in [-1,1]$
- Consider sequence of functions:
 - w, -2w, 2w, -2w, 2w, ...

STABILITY IMPLIES GENERALIZATION

- Recall the notion of "generalization gap"
 - Can we phrase it in terms of stability?

CONCENTRATION BOUNDS AND STABILITY

[Talagrand '80s], [Boucheron, Lugosi, Massart], [Efron-Stein 60s]