THEORY OF MACHINE LEARNING

LECTURE 15

STRONG CONVEXITY, REGULARIZATION, STABILITY
Homework 2 is out. (zip. file submissions). ok.

SUMMARY OF GRADIENT DESCENT

- Argmin $f(x)$, over $x \in D$, where D is a convex domain
- Simple iterative algorithm ("first order")
- Fixed step-size

$$
\omega_{t+1}^{\omega_{0}}=\omega_{t}-\eta \nabla \bar{\nabla}\left(\omega_{t}\right)
$$

(project onto domain if

$$
\begin{array}{ll}
\begin{array}{l}
T=10^{8} \\
\text { gradient descent }
\end{array} \bar{x}_{t} & f\left(\bar{x}_{t}\right)-f\left(x^{*}\right) \\
& \leq O\left(\frac{1}{\sqrt{T}}\right)
\end{array}
$$

- Error of $O(1 / T)$ for "smooth" convex functions (derivative is M-Lipschitz), assuming step size $<\frac{1}{2 M} \quad 10^{4} \quad$ gradient. $\quad \underset{\substack{\text { target } \\ \text { error }}}{ } 10^{-4}$
- If function is also strongly convex with parameter μ, convergence bound

Parallelism \& Complexity.

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

d^{2}. \rightarrow vector in \mathbb{R}^{d}
\rightarrow Optimization literature \rightarrow gradients are "easy" but
$\frac{\partial f}{\partial \omega^{2} t^{\prime}}$
\rightarrow Parallelize grad. descent:
Hessians are "Complex". $\leadsto \mathbb{R}^{d \times d}$.
\rightarrow computing gradients can unable, be parallelized.

$$
\nabla f\left(\omega_{t+1}\right)_{1}=\nabla f\left(\omega_{t}^{\omega_{t}}-\eta \nabla f f_{t}\right)
$$

Bemsio-2015. Second -order methods:
[Mahorey..] [Training $\mathcal{S}^{\text {images }} \log \log \left(\frac{1}{\varepsilon}\right)$

$$
\begin{gathered}
f\left(x_{t+1}\right)-f\left(x^{*}\right)^{0} \leq\left(1-\frac{1}{k}\right) \cdot\left(f\left(x_{t}\right)-f\left(x^{*}\right)\right) \\
f\left(x_{t+1}\right)-f\left(x^{*}\right) \leq\left\|f\left(x_{t}\right)-f\left(x^{*}\right)\right\|^{2}
\end{gathered}
$$

$$
\begin{aligned}
& i_{t+1}=\frac{\omega_{t}-\eta \nabla f\left(\omega_{t}\right)}{M_{1}^{-1} \nabla f\left(\omega_{t}\right)} . \\
& M \times n \rightarrow M_{n k}^{-1}-1 \times n
\end{aligned}
$$

Strong convexity based vesults are good only if M / μ, is "small".
"OPTIMAL" BOUNDS

- Turns out: under just the Lipschitz assumption, $\frac{1}{\sqrt{T}}$ cannot be improved, at least with "sub-gradient oracle"

$$
1 / T \text {. }
$$

10^{-2} iterations.

- Smoothness: purely assuming smoothness, can get rate of $1 / T^{\wedge} 2$. for er (Nesterov 1983), this is optimal for all "gradient based" methods $=10^{-4}$
- Can we use information beyond the gradient?

PRECONDITIONING

$$
\left.\nabla^{2} f={\underset{d}{i}}^{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}}\right)
$$

- Hessian plays informal role in most GD analyses (even M-smooth)

$$
\begin{aligned}
& \left\|\nabla^{2} f\right\| \leq M \text {. } \\
& \text { - "Directions" of Hessian can matter } \\
& x^{\top} \quad \nabla^{2} f \times S_{x}^{\top} M I x^{2} \\
& \text { - Optimal movement using second order information } \\
& \text { aMI- } \nabla^{2} f \text { no } \\
& \left(x_{2}-1\right)^{2}\left(x_{3}-1\right)^{2} \\
& f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2}+\frac{x_{2}^{2}}{4}+\frac{x_{3}^{2}}{9}\right)^{(0)} \sim\left(\begin{array}{c}
2 x_{1} \\
2 x_{2} / 4 \\
2 x_{3}
\end{array}\right) \rightarrow \begin{array}{l}
\text { Lipschitg cons of } \\
\nabla f \\
\text { is } 2
\end{array} \\
& x^{(0)}=(1,1,1) \quad \text { should do gradient descent with, stipsige }<\frac{1}{4} . \quad x_{2}^{2}+\left(x_{1}+x_{2}-\right)^{2}+\cdots \\
& \nabla f\left(x^{(0)}\right)=\frac{1}{4}\left(\begin{array}{l}
2 \\
1 / 2 \\
2 / 94
\end{array}\right) \\
& x^{(1)}=x^{(0)}-\frac{1}{4} \cdot \nabla f\left(x^{(0)}\right)=\left(\frac{1}{2}\right. \\
& =
\end{aligned}
$$

How much to move along diff. directions?

- what if we assume that function behaves like a quadratic in its neighborhood

$$
f(x+\delta) \approx f(x)+\langle\delta, \nabla f(x)
$$

$$
f(x+\delta)=f(x)+\langle\delta, \nabla f(x)\rangle+\frac{1}{2} \delta^{\top}\left(\nabla^{2} f(x)\right) \cdot \delta .
$$

Hermanatx
$a x^{2}+b x+c$

$$
\begin{aligned}
f(x)+\delta & =\left(f^{\prime}(x)+\frac{\delta^{2}}{2!} f^{\prime \prime}(x)\right. \\
\delta & =\frac{f^{\prime}(x)}{\left.f^{\prime \prime}(x)\right)^{\prime}} \\
& \delta=-\left(\nabla^{2} f(x)\right)^{-1} \nabla f(x)
\end{aligned}
$$

(Newton's method)
$\left\{x: f(x)=f\left(x^{*}\right)+0.18\right.$

IMPROVEMENTS, GENERALIZATIONS
for strongly, convex f_{1} wistead of $e^{-\frac{T}{k}}$
\int

$$
e^{-T / \sqrt{k}}
$$

- Polyak's "heavy ball" method (momentum)

$$
\frac{1}{t}\left(\nabla f\left(x_{1}\right) \nabla f\left(x_{1}\right)^{\top}+\ldots+\ldots\right)
$$

- AdaGrad and related methods
- Second order (Newton) methods \rightarrow "first order approx" to second order methods.

STRONG CONVEXITY, MOTIVATION

- Saw that strong convexity leads to "faster" optimization
- Additional benefit - "stability" to small perturbation
- Example of quadratic

$$
\begin{aligned}
& f(x) \rightarrow \text { strongly cover } \rightarrow x^{2} \\
& g(x)=f(x)+f(x) . \sim x^{2}+\alpha x<\frac{\alpha}{2} .
\end{aligned}
$$

arg min $f(x)$ is "close" to $\underset{x}{\operatorname{argmin}} g(x)$.

STABILITY OF LOSS MINIMIZATION

- Loss minimization with ' n ' examples
- What happens if one example is "replaced"?

STABILITY IMPLIES GENERALIZATION

- Recall the notion of "generalization gap"
- Can we phrase it in terms of stability?
- Stability versus "utility"!

