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LECTURE 15

STRONG CONVEXITY, REGULARIZATION, STABILITY



SUMMARY OF GRADIENT DESCENT

 Argmin f(x), over 𝑥 ∈ 𝐷, where D is a convex domain

 Simple iterative algorithm (“first order”)

 Fixed step-size

 Convergence with error O(
1

𝑇
) after T steps for any L-Lipschitz function

 “Noisy gradient oracle” → stochastic gradient descent

 Error of O(1/T) for “smooth” convex functions (derivative is M-Lipschitz), 

assuming step size < 
1

2𝑀

 If function is also strongly convex with parameter 𝜇, convergence bound 

improves to roughly exp(−
𝜇

𝑀
𝑇) (extends to Polyak-Lojasiewicz)



“OPTIMAL” BOUNDS

 Turns out: under just the Lipschitz assumption, 
1

𝑇
cannot be improved, at 

least with “sub-gradient oracle” 

 Smoothness: purely assuming smoothness, can get rate of 1/T^2 

(Nesterov 1983), this is optimal for all “gradient based” methods

 Can we use information beyond the gradient?



PRECONDITIONING

 Hessian plays informal role in most GD analyses (even M-smooth)

 “Directions” of Hessian can matter

 Optimal movement using second order information



IMPROVEMENTS, GENERALIZATIONS

 Polyak’s “heavy ball” method (momentum)

 AdaGrad and related methods

 Second order (Newton) methods

 … 



STRONG CONVEXITY, MOTIVATION 

 Saw that strong convexity leads to “faster” optimization

 Additional benefit – “stability” to small perturbation 

 Example of quadratic



STABILITY OF LOSS MINIMIZATION

 Loss minimization with ‘n’ examples

 What happens if one example is “replaced”?



STABILITY IMPLIES GENERALIZATION

 Recall the notion of “generalization gap”

 Can we phrase it in terms of stability?

 Stability versus “utility”!


