
THEORY OF MACHINE LEARNING

LECTURE 15

STRONG CONVEXITY, REGULARIZATION, STABILITY



SUMMARY OF GRADIENT DESCENT

 Argmin f(x), over 𝑥 ∈ 𝐷, where D is a convex domain

 Simple iterative algorithm (“first order”)

 Fixed step-size

 Convergence with error O(
1

𝑇
) after T steps for any L-Lipschitz function

 “Noisy gradient oracle” → stochastic gradient descent

 Error of O(1/T) for “smooth” convex functions (derivative is M-Lipschitz), 

assuming step size < 
1

2𝑀

 If function is also strongly convex with parameter 𝜇, convergence bound 

improves to roughly exp(−
𝜇

𝑀
𝑇) (extends to Polyak-Lojasiewicz)



“OPTIMAL” BOUNDS

 Turns out: under just the Lipschitz assumption, 
1

𝑇
cannot be improved, at 

least with “sub-gradient oracle” 

 Smoothness: purely assuming smoothness, can get rate of 1/T^2 

(Nesterov 1983), this is optimal for all “gradient based” methods

 Can we use information beyond the gradient?



PRECONDITIONING

 Hessian plays informal role in most GD analyses (even M-smooth)

 “Directions” of Hessian can matter

 Optimal movement using second order information



IMPROVEMENTS, GENERALIZATIONS

 Polyak’s “heavy ball” method (momentum)

 AdaGrad and related methods

 Second order (Newton) methods

 … 



STRONG CONVEXITY, MOTIVATION 

 Saw that strong convexity leads to “faster” optimization

 Additional benefit – “stability” to small perturbation 

 Example of quadratic



STABILITY OF LOSS MINIMIZATION

 Loss minimization with ‘n’ examples

 What happens if one example is “replaced”?



STABILITY IMPLIES GENERALIZATION

 Recall the notion of “generalization gap”

 Can we phrase it in terms of stability?

 Stability versus “utility”!


