THEORY OF MACHINE LEARNING

LECTURE 14

GRADIENT DESCENT - SMOOTH, STRONGLY CONVEX

BASIC THEOREM

- Assume f is L Lipschitz, domain is all of $R^{d},\left|w_{0}-w^{*}\right| \leq B$
- Theorem. Consider running T steps of gradient descent with a fixed learning rate η. Then we have

$$
\frac{1}{T} \sum_{t=1}^{T} f\left(w_{t}\right)-f(w) \leq \frac{B^{2}}{2 \eta T}+\frac{L^{2} \eta}{2} \xrightarrow[\eta]{\text { twing }} \frac{L B}{\sqrt{T}}
$$

- Same proof works if we had a constrained domain
- Use "basic inequality" about convex functions, for any \dagger,

$$
f\left(w^{*}\right) \geq f\left(w_{t}\right)+\left\langle w^{*}-w_{t}, \nabla f\left(w_{t}\right)\right\rangle
$$

- Use the potential function $\Phi_{t}=\left|w_{t}-w^{*}\right|^{2}$

NOISY GRADIENT DESCENT (GENERALIZES SGD)

9.

- Doing gradient descent on fusing a "noisy gradient oracle" ω
- Given a point w, suppose we get "noisy gradient"

$$
\mathbb{E}[g(\omega)]=\bar{v} f(\omega)] ; \quad \mathbb{E}\left[\|g(\omega)\|^{2}\right] \leq L^{2} .
$$

- Same bound holds assuming noise is unbiased, and has low variance

- After T steps, $\sum_{t}\left|\nabla f\left(w_{t}\right)\right|^{2}$ is bounded by $4 M\left(f\left(w_{0}\right)-f\left(w^{*}\right)\right)$
- Convergence rate of $1 / T$

$$
\varepsilon=10^{-4}
$$

- GD on smooth non-convex functions converges to "approximately singular" points

Matrix basics:

$$
A \in \mathbb{R}^{d \times d} \quad z=\left(z, \ldots, z_{d}\right)
$$

Quadratic form in d variables $z_{1}, z_{2}, \ldots, z_{d}$.

$$
\begin{aligned}
& \underline{z}^{\top} A z=\sum_{i, j} A_{i j} \cdot\left(z_{i} z_{j}\right) \quad\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) \\
& \tilde{A}=\frac{A+A^{\top}}{2} \quad \\
& z_{1}^{2}-z_{1} z_{2}+z_{2}^{2}
\end{aligned}
$$

If we look at max oven all z (vectors) with $\|z\|=1$
of this quadratic for:

$$
A_{z}=\lambda_{z} .
$$

$$
z^{\top} A z=\lambda_{f}\left(z^{\top} z\right)
$$

$$
(A-B) \text { is pod. }
$$

$A \succcurlyeq B$ if $\forall z$
$\lambda_{\text {max }}$ of the matrix.
$\min z^{\top} A z$

$$
w_{t+1}=\omega_{t}-\eta \cdot \nabla f\left(w_{t}\right)
$$

$$
\eta>M \eta^{2} \quad \text { or } \quad \eta<\frac{1}{M}
$$

Say we set $\eta \leq \frac{1}{2 M}$.

$$
\begin{gathered}
\text { Say we set }\left(\eta \leq \frac{1}{2 M}\right) \\
f\left(\omega_{t+1}\right) \leq f\left(\omega_{t}\right)-\frac{\eta}{2}+\nabla f\left(w_{t}\right) \|^{2} \\
1 / T
\end{gathered}
$$

$$
\begin{aligned}
& \text { Calt. } \\
& \text { defr of } \\
& f\left(\omega_{t+1}\right) \leq f\left(\omega_{t}\right)+\langle\nabla f\left(\omega_{t}\right), \underbrace{\omega_{t+1}-\omega_{t}}_{\|}\rangle+M\left\|\omega_{t+1}-\omega_{t}\right\|^{2} \\
& =f\left(\omega_{t}\right)-\eta\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}+M \eta^{2}\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \text {. }
\end{aligned}
$$

CAN WE GO BEYOND 1/T CONVERGENCE?

- Smoothness: function is M smooth if gradient is M-Lipschitz

Nesterov acceleration.

- Purely assuming smoothness, can get rate of $1 / T^{\wedge} 2 /(N e s t e r o v ~ 1983)$

$$
\begin{aligned}
w_{t} & \rightarrow \omega_{t+1} \\
& \longrightarrow \omega_{t+1}^{\prime}=w_{t}-y \cdot \nabla f\left(\omega_{t}\right)-\ldots \omega_{t}^{\prime}
\end{aligned}
$$

[Optimal for all "gradient based" methods] \rightarrow Oracle l.b.s.
A. Formally, consider "GD-like" procedures, where $\omega_{t+1}=\left(\begin{array}{l}\left.\omega_{1}, \omega_{2}, \ldots, \omega_{t}\right) \\ \nabla f\left(\omega_{1}\right), \nabla f\left(\omega_{2}\right) \ldots\end{array}\right.$

Ac hor all procedures of this kind, error after t iterations $T f\left(\omega_{t}\right)$). must be $\geqslant \frac{1}{t^{2}}$ in the worst case.

STRONG CONVEXITY

- Smoothness: function is M smooth if gradient is M-Lipschitz
- Strongly convex: function is μ-strongly convex if we have a "lower

$$
\begin{aligned}
& (\Omega \mu-S C): \underbrace{f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle}+\left(\mu \cdot\|y-x\|^{2} \cdot\right) \\
& (M-\text { smooth }): f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+M\|y-x\|^{2} \cdot s \\
& \forall x: \nabla^{2} f(x) \leqslant M I
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{t} & =\| \frac{\omega_{t}-\omega^{*} \|^{2}}{=} \\
\Phi_{t+1} & =\left\|\omega_{t}-\eta \nabla f\left(\omega_{t}\right)-\omega^{*}\right\|^{2} \\
& =\Phi_{t}-\eta\left\langle\nabla f\left(\omega_{t}\right), \omega_{t}-\omega^{*}\right\rangle+\eta\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}
\end{aligned}
$$

Smoothers: $\quad f\left(w_{t+1}\right) \leq f\left(\omega_{t}\right)-\frac{\eta}{2} \cdot\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}, y \quad \eta<\frac{1}{2 M}$.

$$
\begin{aligned}
& \Rightarrow\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \leq \frac{2}{\eta} \cdot\left(f\left(\omega_{t+\infty}\right)-f\left(\omega_{t+1}\right)\right) \\
& \mu \cdot \operatorname{Sing}^{\text {usic }} \Phi_{t_{+1}} \leq \Phi_{t}-\eta\left[f\left(\omega_{t}\right)-f\left(\omega^{*}\right)\right]-\eta \mu \Phi_{t}+\frac{2}{\eta}\left(f\left(\omega_{t}\right)-f\left(\omega_{t+1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\Phi_{\underline{t+1}} & \leq\left(1-\frac{\eta \mu}{4}\right) \cdot \Phi_{t} \\
& \leq\left(1-\frac{\eta \mu}{4}\right)^{2} \cdot \Phi_{t-1} \\
& \ddots \\
& \leq\left(1-\frac{\eta \mu}{4}\right)^{t+1} \Phi_{0}
\end{aligned}
$$

$$
\leqslant\left(1-\frac{\eta \mu}{4}\right)^{2} \cdot \Phi_{t-1} \quad \eta \sim \frac{1}{2 M}
$$

$$
z<1
$$

$$
\mu \leq M \text {. }
$$

$$
1-z \simeq e^{-z}
$$

Attu T steps, $\Phi_{T} \leq\left(1-\left(\frac{\mu}{8 M}\right)^{T} \cdot B^{2} \approx e^{-\frac{\mu T}{8 M}} \cdot B^{2}\right.$.
If we want this to be $<\varepsilon$, then we must pick. condition\#

IMPROVEMENTS, GENERALIZATIONS

PL -condition.

- Polyak-Lojasiewicz inequality: suppose f satisfies: (true for SC functions,
$\mid \nabla \overline{\left.f(w)\right|^{2}} \geq c\left(f(w)-f\left(w^{*}\right)\right)$ for all w with $c=\frac{\mu}{8 M}$)
- "Global" condition, but can be satisfied for non-convex f

$$
\begin{aligned}
f\left(\omega_{t+1}\right) & \leqslant f\left(\omega_{t}\right)-\frac{\eta}{2} \cdot\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \cdot \\
f\left(\omega_{t+1}\right)-\underline{f\left(\omega^{*}\right)} & \leq f\left(\omega_{t}\right)-\underbrace{f\left(\omega^{*}\right)}-\frac{\eta}{2} \underbrace{\nabla f\left(\omega_{t}\right) \|^{2}}_{\geqslant c \cdot\left[f\left(\omega_{t}\right)-f\left(\omega^{*}\right)\right] .} \\
& \leqq\left(1-\frac{c \eta}{2}\right)\left(f\left(\omega_{t}\right)-f\left(\omega^{*}\right)\right) .
\end{aligned}
$$

PRECONDITIONING

- Hessian plays informal role in most GD analyses (M-smooth)
- "Directions" of Hessian can matter
- Optimal movement using second order information

IMPROVEMENTS, GENERALIZATIONS

- Polyak's "heavy ball" method (momentum)
- AdaGrad and related methods
- Second order (Newton) methods

