THEORY OF MACHINE LEARNING

LECTURE 13

GRADIENT DESCENT, THOUGHTS

RECAP: CONVEX OPTIMIZATION
f : convex.
D.

- Problem. Given a convex function defined over a convex domain, find the minimizer (or min value). $\operatorname{argmin} f(x)$.
- Gradient descent - inspired by Taylor approximation
- Start with some feasible w_{0}
- For $t=0,1, \ldots, \mathrm{~T}-1$, set $w_{t+1}=w_{t} \eta \nabla f\left(w_{t}\right)$
- How do you set/"tune" the learning rate?
- Staying feasible

$$
f\left(w_{t+1}\right)=f\left(w_{t}\right)-\eta\left\|\nabla f\left(v_{t}\right)\right\|^{2}
$$

${ }^{\text {keep projecting to } D}$.

BASIC THEOREM

- Assume f is L Lipschitz, domain is all of $R^{d},\left|w_{0}-w^{*}\right| \leq B$
- Theorem. Consider running T steps of gradient descent with a fixed learning rate η. Then we have
$\bar{\omega}$
$f(\bar{\omega})-f\left(\omega^{*}\right) \leq \frac{1}{T} \sum_{t=1} \underbrace{f\left(w_{t}\right)-f\left(w^{*}\right)}_{\geqslant 0} \leq \frac{B^{2}}{2 \eta T}+\frac{L^{2} \eta}{2}$
- Same proof works if we had a constrained domain

$\frac{B L}{\sqrt{T}}$
- Proof works even if functions at different time steps were different!

$$
\begin{aligned}
\sum_{t=1}^{T} \stackrel{f_{t}}{=}\left(w_{t}\right)-\stackrel{f_{t}(w) \leq \frac{B^{2}}{=}}{=}+\frac{L^{2} \eta T}{2} \quad \forall \omega . \\
\sum_{t} f_{t}\left(\omega_{t}\right)-f_{t}(\omega)
\end{aligned}
$$

ANALYSIS

- Use "basic inequality" about convex functions, for any \dagger,

$$
f\left(w^{*}\right) \geq f\left(w_{t}\right)+\left\langle w^{*}-w_{t}, \nabla f\left(w_{t}\right)\right\rangle
$$

- Use the potential function $\Phi_{t}=\left|w_{t}-w^{*}\right|^{2}$
- Note that $\Phi_{t}-\Phi_{t+1}$ (potential drop) is lower bounded by how far $f\left(w_{t}\right)$ is from $f\left(w^{*}\right)$
- $\underbrace{\Phi_{t}-\Phi_{t+1}} \geq 2 \eta(\underbrace{f\left(w_{t}\right)-f\left(w^{*}\right)})-\eta^{2}\left|\nabla f\left(w_{t}\right)\right|^{2} \eta^{2} L^{2}$
- Summing over \dagger gives the bound
- Applications to online convex optimization SGD \rightarrow stochastic grad desert.

Cool thing about the analysis: can even have different f_{t} 's at diff times t.

STOCHASTIC GRADIENT DESCENT

- Consider the setting where the function f can be decomposed as

$$
f(w)=\frac{1}{m} \sum_{i=1}^{m} \underbrace{g_{i}(w)}_{L-}
$$

True in usual ML apples, where g_{i} comerspod L-lipschity. to one (mini) batch]

- In iteration t, pick index i_{t} uniformly at random and take a gradient step, i.e., $w_{t+1}=w_{t}-\eta \nabla \underline{g_{i_{t}}}\left(w_{t}\right) \leadsto \operatorname{not}_{\text {the }} \quad \leadsto$ as $\omega_{t}-\eta \bar{\nabla}\left(\omega_{t}\right)$
- Now w_{t} is a random variable, and we need to argue about $E\left[f\left(w_{t}\right)\right]$
- We still have that the expected potential drop at step t (conditioned on any trajectory so far) is $2 \eta \overline{\left(f\left(w_{t}\right)-f\left(w^{*}\right)\right)}-\eta^{2} L^{2}$
- Earlier bound holds in expectation

$$
\mathbb{E}\left[\Phi_{t}-\Phi_{t+1} \mid w_{t}\right]
$$

NOISY GRADIENT DESCENT

- Consider the setting where perform gradient descent on the function f using a "noisy gradient oracle"
- Given a point w, suppose we get "noisy gradient"

Oracle that gives $g(\omega) \leadsto$ noiky gradient; with the props that

ADDITIONAL STRUCTURE ON FUNCTIONS

$$
f(x) \leqslant f(x)+\langle\nabla f(x), y-x\rangle
$$

$$
+M\|y-x\|^{2}
$$

(earlier: $\quad|f(x)-f(\bar{y})| \leq L\|x-y\| ;\|\nabla f(x)-\nabla f(y)\| \leq M\|x y\|$

- Smoothness - function $f_{\text {is }}$ M smooth if gradient is M-Lipschitz
- Key observation: in this case, every iteration yields drop in function value!

$$
(7 x)_{t}^{D}
$$

$$
\begin{aligned}
& \omega_{t+1}=\omega_{t}-\eta \nabla f\left(\omega_{t}\right) \quad-\eta \nabla f\left(\omega_{t}\right) \\
& f\left(\omega_{t+1}\right) \leq f\left(\omega_{t}\right)+\left\langle\nabla f\left(\omega_{t}\right), \omega_{t+1}-\omega_{t}\right\rangle+M\left\|\omega_{t+1}-\omega_{t}\right\|^{2} \\
&=f\left(\omega_{t}\right)-\eta\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}+M \eta_{\eta}^{2} \mid \nabla f\left(\omega_{t}\right) \|^{2} \\
&=f\left(\omega_{t}\right)-\frac{1}{2 M} G^{2}+\frac{1}{4 M} G^{2}=f\left(\omega_{t}\right)-\frac{\eta}{2}\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}
\end{aligned}
$$

- After T steps, $\sum_{t}\left|\nabla f\left(w_{t}\right)\right|^{2}$ is bounded by $4 M\left(f^{2}\left(w_{0}\right)-f\left(w^{*}\right)\right)$
- Convergence rate of $1 / T$

$$
-\frac{\left.f\left(\omega_{t+1}\right) \leq f\left(\omega_{t}\right)-\frac{\eta}{2}\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}\right)}{\Leftrightarrow\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \leq \frac{2}{\eta}\left(f\left(\omega_{t}\right)-f\left(\omega_{t+1}\right)\right)}
$$

Earlier analysis:

$$
\Phi_{t}=\left\|w_{t}-w^{*}\right\|^{2}
$$

Saw that: pec $\Phi_{t}-\Phi_{t+1} \geqslant 2 \eta\left(f\left(\omega_{t}\right)-f\left(\omega^{*}\right)\right)-\eta^{2}\left\|\nabla f_{t}\left(\omega_{t}\right)\right\|^{2}$

$$
\begin{aligned}
& \Leftrightarrow \quad f\left(\omega_{t}\right)-f\left(\omega_{0}^{*}\right) \leq \frac{\Phi_{t}-\Phi_{t+1}}{2 \eta}+\frac{\eta}{2} \underbrace{\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}} \\
& \leq \frac{\Phi_{t}-\Phi_{t+1}}{2(\hat{5})}+\left(f\left(\omega_{t}\right)-f\left(\omega_{t+1}\right)\right) \\
& \frac{1}{T} \cdot \sum_{t=1}^{T} f\left(\omega_{t}\right)-f\left(\omega^{*}\right) \leq \frac{2 M\left(\Phi_{0}-\ldots\right)}{T}+\frac{\left.f^{\left(\omega_{0}\right)-f\left(\omega_{T}\right)}\right)}{T} \leq C \\
& \begin{array}{c}
\text { error after } T \text { steps } \\
\simeq \frac{1}{T} .
\end{array} \quad \frac{2 M B^{2}}{T}+\frac{C}{T} .
\end{aligned}
$$

NONCONVEX (SMOOTH) FUNCTIONS
\rightarrow If f is non-convex but M-smooth, them anysis before (with $\eta=\frac{1}{2 M}$) implies that $\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \leq 4^{M}\left(f\left(\omega_{t}\right)-f\left(\omega_{+N}\right)\right)$

$$
\Rightarrow \frac{1}{T} \sum_{t=1}^{T}\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \leq \frac{4 M\left(f\left(\omega_{0}\right)-f\left(\omega^{x}\right)\right)}{T}
$$

\rightarrow

$$
\text { Ft st. }\left\|\nabla f\left(w_{t}\right)\right\|^{2} \leq \frac{4 M C}{T}
$$ approximate singular pt.

ADDITIONAL STRUCTURE ON FUNCTIONS

- Smoothness: function is M smooth if gradient is M-Lipschitz
- Strongly convex: function is m-strongly convex if we have a "lower bound" via a parabola

IMPROVEMENTS, GENERALIZATIONS

- Polyak-Lojasiewicz inequality: suppose f satisfies:
$|\nabla f(w)|^{2} \geq c\left(f(w)-f\left(w^{*}\right)\right)$ for all w
- "Global" condition, but can be satisfied for non-convex f
- Polyak's "heavy ball" method (momentum)
- AdaGrad and related methods
- Second order (Newton) methods

