
THEORY OF MACHINE LEARNING

LECTURE 14

GRADIENT DESCENT – SMOOTH, STRONGLY CONVEX



BASIC THEOREM

 Assume f is L Lipschitz, domain is all of 𝑅𝑑, |𝑤0 − 𝑤∗| ≤ 𝐵

 Theorem.  Consider running T steps of gradient descent with a fixed 

learning rate 𝜂. Then we have
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 Same proof works if we had a constrained domain

 Use “basic inequality” about convex functions, for any t,

𝑓 𝑤∗ ≥ 𝑓 𝑤𝑡 + ⟨𝑤∗ − 𝑤𝑡, ∇𝑓(𝑤𝑡)⟩

 Use the potential function Φ𝑡 = |𝑤𝑡 − 𝑤∗|2



NOISY GRADIENT DESCENT (GENERALIZES SGD)

 Doing gradient descent on f using a “noisy gradient oracle”

 Given a point w, suppose we get “noisy gradient”

 Same bound holds assuming noise is unbiased, and has low variance



ADDITIONAL STRUCTURE: SMOOTHNESS

 Smoothness – function is M smooth if gradient is M-Lipschitz

 Key observation: in this case, every iteration yields drop in function 

value (first order approx. is accurate in ball of radius < 1/2M)

 After T steps, σ𝑡 ∇𝑓 𝑤𝑡
2 is bounded by 4𝑀 (𝑓 𝑤0 − 𝑓 𝑤∗ )

 Convergence rate of 1/T

 GD on smooth non-convex functions converges to “approximately singular” 

points



CAN WE GO BEYOND 1/T CONVERGENCE?

 Smoothness: function is M smooth if gradient is M-Lipschitz

 Purely assuming smoothness, can get rate of 1/T^2 (Nesterov 1983)

[Optimal for all “gradient based” methods]



STRONG CONVEXITY

 Smoothness: function is M smooth if gradient is M-Lipschitz

 Strongly convex: function is m-strongly convex if we have a “lower 

bound” via a parabola



IMPROVEMENTS, GENERALIZATIONS

 Polyak-Lojasiewicz inequality: suppose f satisfies:

|∇𝑓 𝑤 |2 ≥ 𝑐(𝑓 𝑤 − 𝑓 𝑤∗ ) for all w

 “Global” condition, but can be satisfied for non-convex f



PRECONDITIONING

 Hessian plays informal role in most GD analyses (M-smooth)

 “Directions” of Hessian can matter

 Optimal movement using second order information



IMPROVEMENTS, GENERALIZATIONS

 Polyak’s “heavy ball” method (momentum)

 AdaGrad and related methods

 Second order (Newton) methods

 … 


