THEORY OF MACHINE LEARNING

LECTURE 13

GRADIENT DESCENT, THOUGHTS



RECAP: CONVEX OPTIMIZATION

Problem. Given a convex function defined over a convex domain, find the

minimizer (or min value).

Gradient descent - inspired by Taylor approximation
= Start with some feasible wy

= Fort=0,1, .., T-1, set wiy s = w; —n Vf(wy)

= How do you set/"tune” the learning rate?

= Staying feasible



BASIC THEOREM

Assume f is L Lipschitz, domain is all of R%, |wy —w*| < B

Theorem. Consider running T steps of gradient descent with a fixed

learning rate n. Then we have
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Same proof works if we had a constrained domain

Proof works even if functions at different time steps were different!
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ANALYSIS

= Use "basic inequality” about convex functions, for any t,
fw?) = f(we) + (W™ = wy, Vf(wy))

= Use the potential function @, = |w, — w*|?

= Note that &, — ., (potential drop) is lower bounded by how far f(w;) is
from f(w*)

=P —Dp g =27 (f(Wt) — f(W*)) — %V (w)|?
= Summing over t gives the bound

= Applications to online convex optimization, SGD



STOCHASTIC GRADIENT DESCENT

Consider the setting where the function f can be decomposed as

1
Fw) == gi(w)

= Initeration t, pick index i, uniformly at random and take a gradient step,
le., Werq = we — Vg, (We)
= Now w; is a random variable, and we need to argue about E[ f(w;)]

= We still have that the expected potential drop at step 1 (conditioned on
any trajectory so far) is 2n(f (w,) — f(w*)) — n?L?

Earlier bound holds in expectation




NOISY GRADIENT DESCENT

= Consider the setting where we perform gradient descent on the function

f using a “noisy gradient oracle”

= Given a point w, suppose we get "noisy gradient”

= Same bound holds



ADDITIONAL STRUCTURE ON FUNCTIONS

Smoothness - function is M smooth if gradient is M-Lipschitz

= Key observation: in this case, every iteration yields drop in function

valuel

After T steps, X:|Vf(w;)|* is bounded by 4M (f (wy) — f(w*))

= Convergence rate of 1/T



NONCONVEX (SMOOTH) FUNCTIONS



ADDITIONAL STRUCTURE ON FUNCTIONS

= Smoothness: function is M smooth if gradient is M-Lipschitz

= Strongly convex: function is m-strongly convex if we have a “lower

bound” via a parabola



IMPROVEMENTS, GENERALIZATIONS

= Polyak-Lojasiewicz inequality: suppose f satisfies:

IVfFW)I? = c(fw) — f(w™)) forall w

"Global" condition, but can be satisfied for non-convex f

Polyak's “heavy ball" method (momentum)

AdaGrad and related methods

= Second order (Newton) methods



