THEORY OF MACHINE LEARNING

LECTURE 11

CONVEX OPTIMIZATION, GRADIENT DESCENT
[Wed AM - office hows - 9:30-11AM.].
(same zoom link as class)

RECAP: LOSS MINIMIZATION

- Optimization can be hard in general, we study "easy" case of convex optimization (hard unless l is "nice' $\rightarrow l$ is conner in θ, where θ are parameters that (Min $f(x)$ over \underline{D}, where f is convex, domain D is convex define h.)
- Minimization is important (may can be hard)

RECAP: CONVEX OPTIMIZATION

- Problem. Given a convex function defined over a convex domain, find the minimizer (or min value).

- $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$ for all $t \in(0,1)$ and $x, y \in D$
- Local opt = global opt (just due to convexity)
- Question: how to find a "locally better" point? (assume f is continuous, differentiable)
- Gradient descent - inspired by Taylor approximation

$$
\begin{aligned}
& f(x+\delta) \approx f(x)+\delta f^{\prime}(x)(\text { in 1D }) \\
& \text { in general, } f(x \text { iD) } \approx f(x)+\langle\delta, \nabla f(x)\rangle .
\end{aligned}
$$

GRADIENT DESCENT ALGORITHM

- Start with $\omega_{0}=$ Some feasible point; η is some fixed
- For $t=0,1, \ldots, T-1$ ($:=\#$ iterations)

$$
\omega_{t+1}=\omega_{t}-\eta \cdot \nabla f\left(\omega_{t}\right)
$$

\rightarrow If ω_{t+1} is outside (set ω_{t+1} to be the projection.

- Generally applicable - even to non-convex functions (in which case you only find local opt)

- Choosing how much to move! (aka learning rate)
- Staying in the domain
- how should we cot η ?
- should it depend on t ?

VANILLA ANALYSIS
(As simple as possible)

$$
|f(x)-f(y)| \leq L\|x-y\| .
$$

- Suppose f is L-Lipschitz, and domain $D=R^{d}$
(no projection needed) $\|\nabla f(x)\| \leq L$.
- Suppose OPT was distance B away from initial point
$\xrightarrow{\longrightarrow}$ argmin $f(x)$
- Theorem. Consider running T steps of gradient descent with a fixed learning rate η. Then we have

$$
\left\|\omega_{0}-\omega^{*}\right\| \leqslant B
$$

ω_{T}

$$
\frac{1}{T} \sum_{t=1}^{T}\left(f\left(w_{t}\right)-f\left(w^{*}\right)\right) \leq \frac{1}{B^{2}} \frac{1}{2 \eta T}+\frac{\Delta^{2} \eta}{2}
$$

$$
\sqrt{\frac{B^{2} \varphi L^{2}}{2 T}}
$$

$$
\omega_{t}^{\prime}=\frac{1}{T}\left(\omega_{1}+\ldots+\omega_{T}\right)
$$

Proof uses "basic inequality" of convexity

$$
\begin{array}{r}
f\left(\omega_{k T}^{\prime}\right) \leq \frac{1}{T} \sum_{t} f\left(\omega_{t}\right)\left(b_{y} \text { convexity }\right) \\
f\left(\omega_{t}^{\prime}\right)-f\left(\omega^{*}\right) \leq
\end{array}
$$

(li η is very small, say "large" $L^{2}(\varepsilon$ is some error of interest)

BASIC INEQUALITY, POTENTIAL FUNCTION ANALYSIS

$$
\forall y, \quad f(y) \geqslant f(x)+\langle y-x, \nabla f(x)\rangle .
$$

$[\Leftrightarrow$ old definition of convexity.).
(intuition) Tells us that keeping track of $\left\|\omega^{*}-\omega_{t}\right\|$ may be useful.

$$
\begin{aligned}
& \Phi_{t}:=\left\|\omega^{*}-\omega_{t}\right\|^{2} \quad \text { (hope: this reduces with time..) } \\
& \|a+b\|^{2}= \\
& \Phi_{t}-\Phi_{t+1}=\| \underbrace{\omega^{*}-\omega_{t}\left\|^{2}-\right\| \omega_{t}^{*}-\omega_{t}+\eta \nabla f\left(\omega_{t}\right) \|^{2}} \\
& \|a\|^{2}+\|\left. b\right|^{2}+ \\
& 2\langle a, b\rangle \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant-2 \eta\left[f\left(\omega^{*}\right)-f\left(\omega_{t}\right)\right]-\eta^{2}\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \\
& 2 \eta\left[f\left(\omega_{t}\right)-f\left(\omega^{*}\right)\right] \\
& \text { ("local" andysis) } \\
& \therefore \quad 2 \eta\left[f\left(\omega_{t}\right)-f\left(\omega^{*}\right)\right] \leqslant \frac{\Phi_{t}-\Phi_{t+1}}{2 \eta}+\frac{\eta}{2}\left\|\nabla f\left(\omega_{t}\right)\right\|^{2} \\
& \sum_{t=0}^{T-1}\left(f\left(\omega_{t}\right)-f\left(\omega^{*}\right)\right) \leq \frac{\Phi_{0}-\Phi_{T}}{2 \eta}+\frac{\eta \cdot L^{2}}{2} \cdot T \sum_{t} A_{t}-A_{t+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { that } B^{2}=\eta \cdot L^{2} T=A_{0}^{2 \eta}-A_{T}
\end{aligned}
$$

(inthorem)
RHS becomes $\frac{B L}{\sqrt{T}}$.

DEALING WITH THE DOMAIN - PROJECTED GD
\rightarrow Entire analysis goes through with projections!
\rightarrow Formally when D is bounded, $G D$ is the fore: Say we have $\omega_{t} \in D$

\square

$$
\begin{aligned}
& \omega_{t+\frac{1}{2}}=\omega_{t}-\eta \nabla f\left(\omega_{t}\right) \\
& \omega_{t+1}=\prod_{D}\left(\omega_{t+\frac{1}{2}}\right)=\underset{x \in D}{\operatorname{argmin}}\left\|\omega_{t+\frac{1}{2}}-x\right\|
\end{aligned}
$$

Obsn:

$$
\left\|w^{*}-\omega_{t+1}\right\|^{2} \leq\left\|w^{*}-\omega_{t+\frac{1}{2}}\right\|^{2}
$$

\rightarrow lets the original
(angle with separating plane is 90°)
\therefore angle with amy ot on the other side
of the plane is 390°

EXTENSIONS

- What if function is "smooth"? Get improved 'rate'
- What if function is "strongly convex"?
- What if functions at different steps are different? (!)

What if at time $t, f_{t}(x) \rightarrow$ convex, L-Lipschitg, varies with time.

$$
\forall \omega^{*} \in D, \quad f\left(\omega^{*}\right) \geqslant f_{t}\left(\omega_{t}\right)+\left\langle\omega^{*}-\omega_{t}, \nabla f_{t}\left(\omega_{t}\right)\right\rangle
$$

$$
\frac{1}{T} \sum_{t}\left(f_{t}\left(\omega_{t}\right)-f_{t}\left(\omega^{*}\right)\right) \leqslant \frac{B^{2}}{2 \eta T}+\frac{L^{2} \eta}{\Sigma} \quad\left[\begin{array}{c}
\text { Online convex } \\
\text { opt. }
\end{array}\right]
$$

