
THEORY OF MACHINE LEARNING

LECTURE 12

GRADIENT DESCENT VARIANTS



RECAP: CONVEX OPTIMIZATION

 Problem. Given a convex function defined over a convex domain, find the 

minimizer (or min value).

 Gradient descent – inspired by Taylor approximation

 Start with some feasible 𝑤0

 For t = 0, 1, …, T-1, set 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 ∇𝑓(𝑤𝑡)

 How do you set/”tune” the learning rate?

 Staying feasible



GRADIENT DESCENT ANALYSIS

 Assume f is L Lipschitz, domain is all of 𝑅𝑑, |𝑤0 − 𝑤∗| ≤ 𝐵

 Use “basic inequality” about convex functions, for any t,

𝑓 𝑤∗ ≥ 𝑓 𝑤𝑡 + ⟨𝑤∗ − 𝑤𝑡, ∇𝑓(𝑤𝑡)⟩

 Use the potential function Φ𝑡 = |𝑤𝑡 − 𝑤∗|2

 Note that Φ𝑡 −Φ𝑡+1 (potential drop) is lower bounded by how far 𝑓 𝑤𝑡 is 

from 𝑓(𝑤∗)



BASIC THEOREM

 Theorem.  Consider running T steps of gradient descent with a fixed 

learning rate 𝜂. Then we have
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 Same proof works if we had a constrained domain. Simply project 

iterates to feasible set

 Proof works even if functions at different time steps were different!
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APPLICATIONS

 Online convex optimization

 Stochastic gradient descent



EXTENSIONS – MORE STRUCTURE ON FUNCTION

 What if function is “smooth”? Get improved rate

 What if function is “strongly convex”?


