THEORY OF MACHINE LEARNING

LECTURE 12

GRADIENT DESCENT VARIANTS



RECAP: CONVEX OPTIMIZATION

Problem. Given a convex function defined over a convex domain, find the

minimizer (or min value).

Gradient descent - inspired by Taylor approximation
= Start with some feasible wy

= Fort=0,1, .., T-1, set wiy s = w; —n Vf(wy)

= How do you set/"tune” the learning rate?

= Staying feasible



GRADIENT DESCENT ANALYSIS

Assume f is L Lipschitz, domain is all of R%, |wy — w*| < B

Use "basic inequality” about convex functions, for any f,

fw?) = f(we) + (W™ —wy, Vf(wy))

Use the potential function ®, = |w, — w*|?

Note that &, — &,,, (potential drop) is lower bounded by how far f(w,) is
from f(w*)




BASIC THEOREM

= Theorem. Consider running T steps of gradient descent with a fixed

learning rate n. Then we have
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= Same proof works if we had a constrained domain. Simply project

iterates to feasible set

= Proof works even if functions at different time steps were different!
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APPLICATIONS

= Online convex optimization

= Stochastic gradient descent



EXTENSIONS - MORE STRUCTURE ON FUNCTION

= What if function is "smooth"? Get improved rate

= What if function is "strongly convex"?



