THEORY OF MACHINE LEARNING

LECTURE 10

CONVEX OPTIMIZATION, GRADIENT DESCENT

OPTIMIZATION

SOLVING ERM EFFICIENTLY

RECAP: ARM IS OFTEN HARD WITH FINITE CLASSES

- Finding best linear classifier (fewest mistakes) is NP hard even to approximate!

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right)
$$

ERM: features label

- Common remedy: loss functions
find h s.t. $\sum_{i=1}^{N} 1\left[h\left(x_{i}\right) \neq y_{i}\right]$ is min
- Many candidate loss functions

Loss min:

$$
\sum_{i=1}^{N} \underbrace{\operatorname{loss}\left(h\left(x_{i}, y_{i} e^{2}\right)\right.}_{2}
$$

Then $\min _{\omega} \sum_{i=1}^{n}\left(\omega^{\top} x_{i}-y_{i}\right)^{2}$ is an easy problem.

$$
\text { e.g. } h(x)=\omega^{\top} x \text { (i nlin. class.) }
$$

$$
\sum_{i=1}^{n}\left(h\left(x_{i}\right)-y_{i}\right)^{2}
$$

Moving to loss min converts ERM into (more tractable) optinnigation pride.

RECAP: CONVEX OPTIMIZATION

$$
f: \text { convex } \quad \text { arg min } f(x)
$$

$D \subseteq \mathbb{R}^{d}$ is a convex set $\quad x \in D$

- Problem. Given a convex function defined over a convex domain, find the minimizer (or min value).

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

- $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$ for all $t \in(0,1)$ and $x, y \in D$

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} .
$$

- Local opt = global opt (just due to convexity) \checkmark
- Question: how to find a "locally better" point? (assume f is continuous, differentiable)

can you find some $x+\delta$ s.t. $f(x+d)<f(x)$?

TAYLOR APPROXIMATION

- Functions over R^{d}, gradients, Hessian
- First order approximation
(one dim):

$$
f(x+\delta)=f(x)+\delta \cdot f^{\prime}(x)+\frac{\delta^{2}}{2!} f^{\prime \prime}(x)+\ldots
$$

$$
\nabla^{2} f
$$

First order approx: $\quad f(x+\delta) \approx f(x)+\delta f^{\prime}(x) \quad \downarrow$ Hessian $f^{\prime \prime}(x) \leq c$

$$
f(x+\delta)=f(x)+\delta \cdot f^{\prime}\left(x^{\prime}\right) \quad f^{(x)}(x) \leq c^{\gamma} \cdot r!
$$

for some $x^{\prime} \in(x, x+\delta)$ [mean value theorem].

Higher dimensions $\quad \forall x, \delta \in \mathbb{R}^{d} . \quad(\delta$ is "small")

$$
f(x)=\|x\|^{2}
$$

$$
\left(f: \mathbb{R}^{d} \rightarrow \mathbb{R}\right) \quad f(x+\delta) \approx f(x)+\langle\delta, \nabla / f(x)\rangle .
$$

$$
\nabla f(x)=\left[\begin{array}{l}
\frac{\partial f}{\partial x_{1}}(x) \\
\frac{\partial f}{\partial x_{2}}(2) \\
\frac{\partial f}{\partial x_{\alpha}}
\end{array}\right]
$$

$$
\left\{x^{\prime}: f(x)=f\left(x^{\prime}\right)\right\}
$$

if we want to find δ s.t. $f(x+\delta)<f(x)$
$\langle y, y\rangle=\|y\|^{2}$.
idea: what f we set $\delta=-c . \nabla f(x)$, for some, $c>0$?

$$
\langle\delta, \underline{\nabla} f(x)\rangle=-c\|\nabla f(x)\|^{2}
$$

This ensures that either $\nabla f^{(x)}=0$, or $f(x+\delta)<f(x)$. (strict)
(already at local opt \longrightarrow global opt). $\quad x \longrightarrow x-c \cdot \nabla f(x)$

GRADIENT DESCENT ALGORITHM

- Generally applicable - even to non-convex functions (in which case you only find some critical pt. (derivative $=0$)
\rightarrow Start with some pt. $\omega^{(0)} \in \in$; pick η as some
$t=0, \ldots,-1$
\rightarrow For T steps, do:

$$
\omega^{(t+1)}=\omega^{(t)}-\eta \nabla f\left(\omega^{(t)}\right)
$$

$\eta_{t} \cdot \nabla / f\left(\omega^{(t)}\right)$
Choose T sit. $\left\|\nabla f\left(x 0^{(T)}\right)\right\|$ is "small enough".

NATURAL ISSUES

$$
\eta_{t}=\frac{1}{t} \quad\left\{\begin{array}{l}
\eta_{t}=\eta \\
\eta_{t}=\frac{1}{\sqrt{t}}
\end{array}\right\}
$$

- Choosing how much to move! (aka learning rate)
- Staying in the domain
\longrightarrow project $x^{(t+1)}$ to D.

projection cans be tricky!. (y D is not "simple")

GRADIENT DESCENT - VANILLA ANALYSIS $|f(x+\delta)-f(x)| \leq \underline{L}\|\delta\|$
L-Lipschitg: $\left.\left.|f(x)-f(y)| \leq L\|x-y\|_{2} \quad \approx K \delta, \nabla f(x)\right\rangle\right\rangle$
convex,

$$
\Longrightarrow\|\nabla f(x)\| \leq L
$$

- Suppose f is L-Lipschitz, and domain $D=R^{d}$
- Suppose OPT was distance B away from initial point
- Theorem. Consider running T steps of gradient descent with a fixed learning rate η. Then we have

$$
\frac{1}{T} \sum_{t=1}^{T}\left[f\left(w_{t}\right)-f(w)\right] \leq \frac{B^{2}}{2 \eta T}+\frac{t^{2}}{2}
$$

w : true minimizer of $f, \bar{u}, w=\operatorname{argmin}_{d} f(x)$ $x \in \mathbb{R}^{d}$.

Theoreen tells us that y we perform "sufficiently many" steps of GD with fixed l-rate $\eta, \frac{1}{T} \sum_{t=1}^{T}\left(f\left(\omega_{t}\right)-f(w)\right) \leq O(\eta)$.

Can you find one pt $\bar{\omega}$ sit. $f(\bar{\omega})-f(\omega) \leq O(\eta)$?
argmin $f\left(\omega_{t}\right)$

$$
\begin{aligned}
& \bar{\omega}_{z}=\frac{1}{T} \sum_{t} \omega_{t} \\
& f(\bar{\omega}) \leq \frac{1}{t} \sum_{t} f\left(\omega_{t}\right)
\end{aligned}
$$

"Last iterate convergence"

ALTERNATE DEFINITION OF CONVEXITY

- Function lies "above" the tangent plane at any point !
- Related to the definition of convex functions/bodies via half spaces
"Baric inequality" in convexity.

$$
f(y)-f(x) \geqslant\langle\overline{f(x), y-x\rangle}
$$

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} .
$$

(Homeursk 2).

GRADIENT DESCENT - VANILLA ANALYSIS

- Suppose $\underset{\sim}{f}$ is L-Lipschitz, and domain $D=R^{d}$
- Suppose OPT was distance B away from initial point
- Theorem. Consider running T steps of gradient descent with a fixed learning rate η. Then we have

$$
\begin{array}{r}
\frac{1}{T} \sum_{t=1}^{T} \underbrace{f\left(w_{t}\right)-f(w)} \leq \frac{B^{2}}{2 \eta T}+\frac{L^{2} \eta}{2} \\
f(\omega)-f\left(w_{t}\right) \geqslant \cdots \\
f\left(\omega_{t}\right)-f(\omega) \leq \cdots
\end{array}
$$

Basic imp of convexity:

$$
\begin{aligned}
f(\omega)-f\left(\omega_{t}\right) & \geqslant\left\langle\nabla f\left(\omega_{t}\right), \omega-\omega_{t}\right\rangle \\
\Leftrightarrow f\left(\omega_{t}\right)-f(\omega) & \left.\leqslant \nabla f\left(\omega_{t}\right), \omega_{t}-\omega\right\rangle
\end{aligned}
$$

How to connect to grad. descent?
(Algebraic magic)

$$
w_{t+1}=w_{t}-\eta \cdot \nabla / f\left(w_{t}\right)
$$

$$
\begin{aligned}
& \Phi_{t}=\left\|w_{t}-w\right\|^{2} \\
& \frac{\left\|z-\eta \nabla f\left(\omega_{t}\right)\right\|^{2}-\|z\|^{2}}{\|z\|^{2}+\eta^{2} \| \& f\left(\omega_{x}\right) t^{2}-2} \\
& \left(\bar{\Phi}_{t+1}-\Phi_{t}\right)=\left\|\omega_{t}-\eta \nabla f\left(\omega_{t}\right)-\omega\right\|^{2}-\left\|\widetilde{\omega_{t}-\omega}\right\|^{2} \\
& =-2 \eta\left[\left\langle\nabla f\left(\omega_{t}\right), \omega_{t}-\omega\right\rangle+\eta^{2}\left\|\nabla f\left(\omega_{t}\right)\right\|^{2}\right. \\
& \Phi_{t+k}-\Phi_{t}+\Phi_{t}-\Phi_{t-1}+K /+\Phi_{1}-\Phi_{0}
\end{aligned}
$$

ANALYSIS VIA POTENTIAL FUNCTIONS
\rightarrow drop in potential is "related" to change in function value...

DEALING WITH THE DOMAIN - PROJECTED GD

