
THEORY OF MACHINE LEARNING

LECTURE 11

CONVEX OPTIMIZATION, GRADIENT DESCENT



RECAP:  LOSS MINIMIZATION

 ERM is hard, so we consider minimization of loss

 General problem

 Optimization can be hard in general, we study “easy” case of convex 

optimization

 Min f(x) over D, where f is convex, domain D is convex 

 Minimization is important (max can be hard)



RECAP: CONVEX OPTIMIZATION

 Problem. Given a convex function defined over a convex domain, find the 

minimizer (or min value).

 𝑓 𝑡𝑥 + 1 − 𝑡 𝑦 ≤ 𝑡 𝑓 𝑥 + 1 − 𝑡 𝑓(𝑦) for all 𝑡 ∈ (0,1) and 𝑥, 𝑦 ∈ 𝐷

 Local opt = global opt (just due to convexity)

 Question: how to find a “locally better” point?  (assume f is continuous, 

differentiable)

 Gradient descent – inspired by Taylor approximation



GRADIENT DESCENT ALGORITHM

 Generally applicable – even to non-convex functions 

(in which case you only find local opt)

 Choosing how much to move! (aka learning rate)

 Staying in the domain



VANILLA ANALYSIS

 Suppose f is L-Lipschitz, and domain 𝐷 = 𝑅𝑑

 Suppose OPT was distance B away from initial point

 Theorem.  Consider running T steps of gradient descent with a fixed 

learning rate 𝜂. Then we have
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Proof uses “basic inequality” of convexity



BASIC INEQUALITY, POTENTIAL FUNCTION ANALYSIS



DEALING WITH THE DOMAIN – PROJECTED GD



EXTENSIONS

 What if function is “smooth”? Get improved ‘rate’

 What if function is “strongly convex”?

 What if functions at different steps are different? (!)


