
THEORY OF MACHINE LEARNING

LECTURE 10

CONVEX OPTIMIZATION, GRADIENT DESCENT



OPTIMIZATION
SOLVING ERM EFFICIENTLY



RECAP:  ERM IS OFTEN HARD WITH FINITE CLASSES

 Finding best linear classifier (fewest mistakes) is NP hard even to 

approximate!

 Common remedy: loss functions

 Many candidate loss functions



RECAP: CONVEX OPTIMIZATION

 Problem. Given a convex function defined over a convex domain, find the 

minimizer (or min value).

 𝑓 𝑡𝑥 + 1 − 𝑡 𝑦 ≤ 𝑡 𝑓 𝑥 + 1 − 𝑡 𝑓(𝑦) for all 𝑡 ∈ (0,1) and 𝑥, 𝑦 ∈ 𝐷

 Local opt = global opt (just due to convexity)

 Question: how to find a “locally better” point?  (assume f is continuous, 

differentiable)



TAYLOR APPROXIMATION

 Functions over 𝑅𝑑, gradients, Hessian

 First order approximation



GRADIENT DESCENT ALGORITHM

 Generally applicable – even to non-convex functions 

(in which case you only find local opt)



NATURAL ISSUES

 Choosing how much to move! (aka learning rate)

 Staying in the domain



GRADIENT DESCENT – VANILLA ANALYSIS

 Suppose f is L-Lipschitz, and domain 𝐷 = 𝑅𝑑

 Suppose OPT was distance B away from initial point

 Theorem. Consider running T steps of gradient descent with a fixed 

learning rate 𝜂. Then we have
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ALTERNATE DEFINITION OF CONVEXITY

 Function lies “above” the tangent plane at any point !

 Related to the definition of convex functions/bodies via half spaces



GRADIENT DESCENT – VANILLA ANALYSIS

 Suppose f is L-Lipschitz, and domain 𝐷 = 𝑅𝑑

 Suppose OPT was distance B away from initial point

 Theorem. Consider running T steps of gradient descent with a fixed 

learning rate 𝜂. Then we have
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ANALYSIS VIA POTENTIAL FUNCTIONS



DEALING WITH THE DOMAIN – PROJECTED GD


